GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Jan 2019, 17:37

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
  • The winning strategy for a high GRE score

     January 17, 2019

     January 17, 2019

     08:00 AM PST

     09:00 AM PST

    Learn the winning strategy for a high GRE score — what do people who reach a high score do differently? We're going to share insights, tips and strategies from data we've collected from over 50,000 students who used examPAL.
  • Free GMAT Strategy Webinar

     January 19, 2019

     January 19, 2019

     07:00 AM PST

     09:00 AM PST

    Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.

M27-05

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52231
M27-05  [#permalink]

Show Tags

New post 16 Sep 2014, 00:26
2
15
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

35% (01:22) correct 65% (01:33) wrong based on 203 sessions

HideShow timer Statistics

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52231
Re M27-05  [#permalink]

Show Tags

New post 16 Sep 2014, 00:26
2
7
Official Solution:


This is a 700+ question.

(1) \(a-b=15\). Must know for the GMAT: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. So, \(a+b \gt c \gt 15\), which means that \(a+b+c \gt 30\). Sufficient.

(2) The area of the triangle is 50. For a given perimeter equilateral triangle has the largest area. Now, if the perimeter were equal to 30 then it would have the largest area if it were equilateral. Let's find what this area would be: \(Area_{equilateral}=s^2*\frac{\sqrt{3}}{4}=(\frac{30}{3})^2*\frac{\sqrt{3}}{4}=25*\sqrt{3} \lt 50\). Since even an equilateral triangle with perimeter of 30 cannot produce the area of 50, then the perimeter must be more than 30. Sufficient.


Answer: D
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
User avatar
Joined: 31 Mar 2016
Posts: 384
Location: India
Concentration: Operations, Finance
GMAT 1: 670 Q48 V34
GPA: 3.8
WE: Operations (Commercial Banking)
GMAT ToolKit User Premium Member
Re: M27-05  [#permalink]

Show Tags

New post 01 Aug 2016, 04:19
I think this is a high-quality question and I agree with explanation.
Senior Manager
Senior Manager
User avatar
G
Status: You have to have the darkness for the dawn to come
Joined: 09 Nov 2012
Posts: 290
Daboo: Sonu
GMAT 1: 590 Q49 V20
GMAT 2: 730 Q50 V38
GMAT ToolKit User Reviews Badge
Re: M27-05  [#permalink]

Show Tags

New post 03 Mar 2017, 08:34
1
Bunuel wrote:
Official Solution:


This is a 700+ question.

(1) \(a-b=15\). Must know for the GMAT: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. So, \(a+b \gt c \gt 15\), which means that \(a+b+c \gt 30\). Sufficient.

(2) The area of the triangle is 50. For a given perimeter equilateral triangle has the largest area. Now, if the perimeter were equal to 30 then it would have the largest area if it were equilateral. Let's find what this area would be: \(Area_{equilateral}=s^2*\frac{\sqrt{3}}{4}=(\frac{30}{3})^2*\frac{\sqrt{3}}{4}=25*\sqrt{3} \lt 50\). Since even an equilateral triangle with perimeter of 30 cannot produce the area of 50, then the perimeter must be more than 30. Sufficient.




Answer: D


Could you please explain statement 2 in detail. I am unable to understand the solution for statement 2.
_________________

You have to have the darkness for the dawn to come.

Give Kudos if you like my post

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52231
Re: M27-05  [#permalink]

Show Tags

New post 04 Mar 2017, 02:12
daboo343 wrote:
Bunuel wrote:
Official Solution:


This is a 700+ question.

(1) \(a-b=15\). Must know for the GMAT: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. So, \(a+b \gt c \gt 15\), which means that \(a+b+c \gt 30\). Sufficient.

(2) The area of the triangle is 50. For a given perimeter equilateral triangle has the largest area. Now, if the perimeter were equal to 30 then it would have the largest area if it were equilateral. Let's find what this area would be: \(Area_{equilateral}=s^2*\frac{\sqrt{3}}{4}=(\frac{30}{3})^2*\frac{\sqrt{3}}{4}=25*\sqrt{3} \lt 50\). Since even an equilateral triangle with perimeter of 30 cannot produce the area of 50, then the perimeter must be more than 30. Sufficient.




Answer: D


Could you please explain statement 2 in detail. I am unable to understand the solution for statement 2.


From (2) we have that if even an equilateral triangle with perimeter of 30 cannot have the area of 50, then the perimeter must be more that 30.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
B
Joined: 10 May 2017
Posts: 27
Re: M27-05  [#permalink]

Show Tags

New post 14 Jun 2017, 05:16
Hi Sir,

I believe it is the same if I assume this way right?

For a give area, equilateral triangle has the smallest perimeter.

S^2 (sq.rt3/4)=50 when simplified will show clearly that a side is >12.

Hence sufficient.
Intern
Intern
avatar
B
Joined: 21 Dec 2016
Posts: 3
CAT Tests
Re: M27-05  [#permalink]

Show Tags

New post 16 Oct 2017, 10:04
Nice answer, in my opinion doing it in your way would be more useful for other problems!
Thanks! :thumbup:
Thread Master - Part Time MBA Programs
avatar
S
Joined: 11 Jan 2018
Posts: 128
Location: United States
GMAT 1: 620 Q46 V30
GMAT 2: 640 Q48 V30
GMAT 3: 690 Q48 V36
GPA: 3.32
WE: Operations (Retail)
M27-05  [#permalink]

Show Tags

New post 13 Sep 2018, 07:15
EDIT: Got it. Number 2 is sufficient that perimeter will always be >30.
Intern
Intern
avatar
B
Joined: 06 Feb 2017
Posts: 38
Location: India
Schools: HBS '22, HEC '22
GMAT 1: 570 Q39 V28
GMAT 2: 620 Q49 V26
GPA: 4
Re: M27-05  [#permalink]

Show Tags

New post 13 Sep 2018, 09:52
1
Statement 1 can be easily shown as sufficient as the difference between the two sides must be less than the third side. So the third side would be at least 15 and as given in statement the difference between the two sides is 15 so their sum would obviously be greater than 15. So perimeter will be greater than 30.

Statement 2: Area of a triangle is given to be 50. As it is a fact that for a given perimeter the equilateral triangle will have maximum area. So let us assume the side of a triangle is 10 then (root3/4)*(10)2 then we will get the area as 43.25 which less than 50. hence the perimeter has to be more than 30. Sufficient.

So answer is D
_________________

I hope this helped. If this was indeed helpful, then you may say Thank You by giving a Kudos!

Manager
Manager
avatar
G
Joined: 23 Aug 2016
Posts: 108
Location: India
Concentration: Finance, Strategy
GMAT 1: 660 Q49 V31
GPA: 2.84
WE: Other (Energy and Utilities)
Reviews Badge CAT Tests
Re: M27-05  [#permalink]

Show Tags

New post 13 Sep 2018, 22:34
Bunuel wrote:
Official Solution:


This is a 700+ question.

(1) \(a-b=15\). Must know for the GMAT: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. So, \(a+b \gt c \gt 15\), which means that \(a+b+c \gt 30\). Sufficient.

(2) The area of the triangle is 50. For a given perimeter equilateral triangle has the largest area. Now, if the perimeter were equal to 30 then it would have the largest area if it were equilateral. Let's find what this area would be: \(Area_{equilateral}=s^2*\frac{\sqrt{3}}{4}=(\frac{30}{3})^2*\frac{\sqrt{3}}{4}=25*\sqrt{3} \lt 50\). Since even an equilateral triangle with perimeter of 30 cannot produce the area of 50, then the perimeter must be more than 30. Sufficient.


Answer: D


HI,

I understood Statement 1 is sufficient.

However, I have issues understanding statement 2.

How can we confirm that "For a given perimeter equilateral triangle has the largest area.".

Can it be proved by a theorem?

Thanks
_________________

Thanks and Regards,

Honneeey.

In former years,Used to run for "Likes", nowadays, craving for "Kudos". :D

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52231
Re: M27-05  [#permalink]

Show Tags

New post 13 Sep 2018, 22:50
honneeey wrote:
Bunuel wrote:
Official Solution:


This is a 700+ question.

(1) \(a-b=15\). Must know for the GMAT: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. So, \(a+b \gt c \gt 15\), which means that \(a+b+c \gt 30\). Sufficient.

(2) The area of the triangle is 50. For a given perimeter equilateral triangle has the largest area. Now, if the perimeter were equal to 30 then it would have the largest area if it were equilateral. Let's find what this area would be: \(Area_{equilateral}=s^2*\frac{\sqrt{3}}{4}=(\frac{30}{3})^2*\frac{\sqrt{3}}{4}=25*\sqrt{3} \lt 50\). Since even an equilateral triangle with perimeter of 30 cannot produce the area of 50, then the perimeter must be more than 30. Sufficient.


Answer: D


HI,

I understood Statement 1 is sufficient.

However, I have issues understanding statement 2.

How can we confirm that "For a given perimeter equilateral triangle has the largest area.".

Can it be proved by a theorem?

Thanks


Here is a proof of this theorem: https://www.mathalino.com/reviewer/diff ... -perimeter

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52231
Re: M27-05  [#permalink]

Show Tags

New post 13 Sep 2018, 22:54
Bunuel wrote:
honneeey wrote:
Bunuel wrote:
Official Solution:


This is a 700+ question.

(1) \(a-b=15\). Must know for the GMAT: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. So, \(a+b \gt c \gt 15\), which means that \(a+b+c \gt 30\). Sufficient.

(2) The area of the triangle is 50. For a given perimeter equilateral triangle has the largest area. Now, if the perimeter were equal to 30 then it would have the largest area if it were equilateral. Let's find what this area would be: \(Area_{equilateral}=s^2*\frac{\sqrt{3}}{4}=(\frac{30}{3})^2*\frac{\sqrt{3}}{4}=25*\sqrt{3} \lt 50\). Since even an equilateral triangle with perimeter of 30 cannot produce the area of 50, then the perimeter must be more than 30. Sufficient.


Answer: D


HI,

I understood Statement 1 is sufficient.

However, I have issues understanding statement 2.

How can we confirm that "For a given perimeter equilateral triangle has the largest area.".

Can it be proved by a theorem?

Thanks


Here is a proof of this theorem: https://www.mathalino.com/reviewer/diff ... -perimeter

Hope it helps.


Useful video:


_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
B
Joined: 12 Jan 2017
Posts: 35
Re: M27-05  [#permalink]

Show Tags

New post 20 Sep 2018, 10:16
Bunuel wrote:
Official Solution:


This is a 700+ question.

(1) \(a-b=15\). Must know for the GMAT: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. So, \(a+b \gt c \gt 15\), which means that \(a+b+c \gt 30\). Sufficient.

(2) The area of the triangle is 50. For a given perimeter equilateral triangle has the largest area. Now, if the perimeter were equal to 30 then it would have the largest area if it were equilateral. Let's find what this area would be: \(Area_{equilateral}=s^2*\frac{\sqrt{3}}{4}=(\frac{30}{3})^2*\frac{\sqrt{3}}{4}=25*\sqrt{3} \lt 50\). Since even an equilateral triangle with perimeter of 30 cannot produce the area of 50, then the perimeter must be more than 30. Sufficient.


Answer: D

This is a damn tricky one for sure
GMAT Club Bot
Re: M27-05 &nbs [#permalink] 20 Sep 2018, 10:16
Display posts from previous: Sort by

M27-05

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: chetan2u, Bunuel



Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.