Last visit was: 19 Nov 2025, 06:15 It is currently 19 Nov 2025, 06:15
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
shash
Joined: 18 Nov 2010
Last visit: 07 Feb 2011
Posts: 8
Own Kudos:
46
 [34]
Given Kudos: 8
Posts: 8
Kudos: 46
 [34]
1
Kudos
Add Kudos
33
Bookmarks
Bookmark this Post
Most Helpful Reply
avatar
muralimba
Joined: 30 Aug 2010
Last visit: 30 Jun 2011
Posts: 65
Own Kudos:
571
 [25]
Given Kudos: 27
Location: Bangalore, India
Posts: 65
Kudos: 571
 [25]
21
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,993
 [23]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,993
 [23]
17
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,388
Own Kudos:
778,221
 [6]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,388
Kudos: 778,221
 [6]
3
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
shash
Machine A can process 6000 envelopes in 3 hours. MAchines B and C working together but independently can process the same number of envelopes in 2.5 hours. If Machines A and C working together but independently process 3000 envelopes in 1 hour, then how many hours would it take Machine B to process 12000 envelopes.

2
3
4
6
8 - Correct Answer

I got this far:

Machine C = 6 hours for 6000 envelopes

Then (1/T) = (1/b) +(1/c)

1/2.5 = (1/b) + (1/6)
b= (30/7) for 6000 envelopes or (60/7) for 12000 envelopes.

Why isnt the answer coming up to exactly 8?

I think you did everything right.

Let the time needed for A, B and C working individually to process 6,000 envelopes be \(a\), \(b\) and \(c\) respectively.

Now, as "A can process 6,000 envelopes in 3 hours" then \(a=3\);

As "B and C working together but independently can process the same number (6,000) of envelopes in 2.5 hours" then \(\frac{1}{b}+\frac{1}{c}=\frac{1}{2.5}=\frac{2}{5}\);

Also, as "A and C working together but independently process 3000 envelopes in 1 hour", then A and C working together but independently process 2*3,000=6,000 envelopes in 2*1=2 hours: \(\frac{1}{a}+\frac{1}{c}=\frac{1}{2}\) --> as \(a=3\) then \(c=6\);

So, \(\frac{1}{b}+\frac{1}{6}=\frac{2}{5}\) --> \(b=\frac{30}{7}\), which means that B produces 6,000 envelopes in 30/7 hours, thus it produces 12,000 envelopes in 60/7 hours.

Answer: E.
User avatar
krishireddy
Joined: 03 Jun 2009
Last visit: 19 Dec 2010
Posts: 35
Own Kudos:
46
 [1]
Given Kudos: 7
Posts: 35
Kudos: 46
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
muralimba
forget abt the variables a,b,c,d.....in this simple problem

A - 6000 in 3 hrs ==> 2000 in 1 hr
BC- 6000 - in 2.5 hrs == 2400 in 1 hr
AC - 3000 in 1 hr

take AC -3000 in 1 hr , in which A's contribution is 2000 in 1 hr, hence C's contribution is 1000 in 1 hr
take BC -2400 , in which C's contribution is 1000 in 1 hr, hence B's contribution is 1400 in 1 hr.

B - 1400 - 1 hr
==> 12000 in 12000/1400 hrs = 60/7

Regards,
Murali.


Adding to Murali's approach....

A = 2000
B+C = 2400
A+C = 3000 => C = 3000-1 = 3000-2000 = 1000

=> B = 2400 -C =2400-1000 =1400

hence B can process 1400 Envelopes in 1hour...how much time wud it take B to process 12000 Envelopes = 12000/1400 = 60/7
User avatar
Sarang
Joined: 01 Nov 2010
Last visit: 11 Jul 2012
Posts: 81
Own Kudos:
267
 [1]
Given Kudos: 20
Location: Zürich, Switzerland
Posts: 81
Kudos: 267
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
For 1 hour-

Machine A rate- 2000 envelopes
Machine B+C rate- 2400 envelopes
Since A + C = 3000 envelopes A's rate is 2000 envelopes as above, C has a rate of 1000 envelopes per hour.
Which makes machine B's rate as 1400 envelopes per hour.

Thus, it will take 8 hours to manufacture 12000 envelopes.

Answer:-E
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,388
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,388
Kudos: 778,221
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on work/rate problems: work-word-problems-made-easy-87357.html
All DS work/rate problems to practice: search.php?search_id=tag&tag_id=46
All PS work/rate problems to practice: search.php?search_id=tag&tag_id=66
User avatar
mau5
User avatar
Verbal Forum Moderator
Joined: 10 Oct 2012
Last visit: 31 Dec 2024
Posts: 479
Own Kudos:
3,340
 [1]
Given Kudos: 141
Posts: 479
Kudos: 3,340
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shash
Machine A can process 6000 envelopes in 3 hours. Machines B and C working together but independently can process the same number of envelopes in 2.5 hours. If Machines A and C working together but independently process 3000 envelopes in 1 hour, then how many hours would it take Machine B to process 12000 envelopes.

A. 2
B. 3
C. 4
D. 6
E. 8

Machine A takes 3 hours for 6000 envelopes. Thus, Machine A would take exactly 6 hours for 12000 envelopes. Also, we know that machines B and C, working together, can produce the same no of envelopes in 2.5 hours. Thus, if\(r_B\) and\(r_C\) are the rates respectively , we know that\((r_B+r_C)*\frac{5}{2}\) = 6000 --> \((r_B+r_C) = 2400\). Thus, even if we assume that \(r_B\) = 2000 (which is the same rate as that of Machine A), Machine B would again need 6 hours. However, as\(r_C\)= 1000, we know for sure that\(r_B\) <2000. Thus, the only option more than 6 hours is E(Assuming that the correct OA is provided with the question).
avatar
PKPKay
Joined: 30 May 2013
Last visit: 07 Feb 2017
Posts: 10
Own Kudos:
Given Kudos: 2
GMAT 1: 680 Q48 V35
GMAT 1: 680 Q48 V35
Posts: 10
Kudos: 7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Sarang
For 1 hour-

Machine A rate- 2000 envelopes
Machine B+C rate- 2400 envelopes
Since A + C = 3000 envelopes A's rate is 2000 envelopes as above, C has a rate of 1000 envelopes per hour.
Which makes machine B's rate as 1400 envelopes per hour.

Thus, it will take 8 hours to manufacture 12000 envelopes.

Answer:-E

I did this but shouldn't the work take 9 hours instead?
In 8 hours machine B would have made 1400 * 8 = 11200 envelopes.
In order to make 12000 it would require a fraction of an hour to create 200 more envelopes.
Am I mistaken?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,993
Kudos
Add Kudos
Bookmarks
Bookmark this Post
PKPKay
Sarang
For 1 hour-

Machine A rate- 2000 envelopes
Machine B+C rate- 2400 envelopes
Since A + C = 3000 envelopes A's rate is 2000 envelopes as above, C has a rate of 1000 envelopes per hour.
Which makes machine B's rate as 1400 envelopes per hour.

Thus, it will take 8 hours to manufacture 12000 envelopes.

Answer:-E

I did this but shouldn't the work take 9 hours instead?
In 8 hours machine B would have made 1400 * 8 = 11200 envelopes.
In order to make 12000 it would require a fraction of an hour to create 200 more envelopes.
Am I mistaken?

As mentioned above, the OA is incorrect. In fact, the options are incorrect since none of them is 60/7 hrs (which is the answer).
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,388
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,388
Kudos: 778,221
Kudos
Add Kudos
Bookmarks
Bookmark this Post
PKPKay
Sarang
For 1 hour-

Machine A rate- 2000 envelopes
Machine B+C rate- 2400 envelopes
Since A + C = 3000 envelopes A's rate is 2000 envelopes as above, C has a rate of 1000 envelopes per hour.
Which makes machine B's rate as 1400 envelopes per hour.

Thus, it will take 8 hours to manufacture 12000 envelopes.

Answer:-E

I did this but shouldn't the work take 9 hours instead?
In 8 hours machine B would have made 1400 * 8 = 11200 envelopes.
In order to make 12000 it would require a fraction of an hour to create 200 more envelopes.
Am I mistaken?

Edited the options.

Check for a solution here: machine-a-can-process-6000-envelopes-in-3-hours-machines-b-105362.html#p823509 or here: machine-a-can-process-6000-envelopes-in-3-hours-machines-b-105362.html#p823655
avatar
samheeta
Joined: 18 Mar 2013
Last visit: 05 Sep 2013
Posts: 2
Own Kudos:
Given Kudos: 45
Posts: 2
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
How much time should one take in solving these kind of questions which involves though simple yet a lot of calculations?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,993
Kudos
Add Kudos
Bookmarks
Bookmark this Post
samheeta
How much time should one take in solving these kind of questions which involves though simple yet a lot of calculations?

This can be easily done in under 2 mins. If you look at the explanation provided above:


To make the question straight forward, first thing you can do is make the work the same for all:
Machine A processes 12000 envelopes in - 6 hrs
Machines B and C process 12000 in - 5 hrs
Machines A and C process 12000 in - 4 hrs
I chose to get them all to 12000 since my question has 12000 in it. Also, I easily get rid of all decimals.

Almost no calculations till here

Now, I just find 1/6 + 1/c = 1/4 and get c = 12
and 1/b + 1/12 = 1/5 so b = 60/7 hrs

You should be comfortable with manipulating fractions.
1/c = 1/4 - 1/6 = 2/24 = 1/12
So c = 12 (Finding c should take just a few seconds)
User avatar
SVaidyaraman
Joined: 17 Dec 2012
Last visit: 11 Jul 2025
Posts: 576
Own Kudos:
1,795
 [2]
Given Kudos: 20
Location: India
Expert
Expert reply
Posts: 576
Kudos: 1,795
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
shash
Machine A can process 6000 envelopes in 3 hours. Machines B and C working together but independently can process the same number of envelopes in 2.5 hours. If Machines A and C working together but independently process 3000 envelopes in 1 hour, then how many hours would it take Machine B to process 12000 envelopes.

A. 2
B. 3
C. 4
D. 6
E. 60/7

You can either take the amount of work done as the same as Karishma has done or take the work done by each in the same time. I will do the latter

1. Work done in 1 hr by A is 2000 envelopes
2. Work done in 1 hr by A and C is 3000 envelopes
3. So work done in 1 hr by C is 1000 envelopes
4. Work done in 1 hr by B and C is 2400 envelopes
5. So work done in 1 hr by B is 1400 envelopes
6. So to process 12000 envelopes B will take 12000/1400 hrs = 60/7 hrs

So the answer is choice E
User avatar
Blackbox
Joined: 30 May 2012
Last visit: 04 Nov 2017
Posts: 162
Own Kudos:
Given Kudos: 151
Location: United States (TX)
Concentration: Finance, Marketing
GPA: 3.3
WE:Information Technology (Consulting)
Posts: 162
Kudos: 714
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shash
... If Machines A and C working together but independently ...

Is this a tricky way of saying "working together"? I mean, can I treat that phrase just like how you would when you combine the rates of machine A and machine C? Is there a question where GMAT asks two or more entities working together depending on each other?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,388
Own Kudos:
778,221
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,388
Kudos: 778,221
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Blackbox
shash
... If Machines A and C working together but independently ...

Is this a tricky way of saying "working together"? I mean, can I treat that phrase just like how you would when you combine the rates of machine A and machine C? Is there a question where GMAT asks two or more entities working together depending on each other?

Yes. This means that they work independently of each other but they are turned on simultaneously.
avatar
Salvetor
Joined: 23 Dec 2014
Last visit: 20 Dec 2021
Posts: 41
Own Kudos:
46
 [2]
Given Kudos: 52
Posts: 41
Kudos: 46
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shash
Machine A can process 6000 envelopes in 3 hours. Machines B and C working together but independently can process the same number of envelopes in 2.5 hours. If Machines A and C working together but independently process 3000 envelopes in 1 hour, then how many hours would it take Machine B to process 12000 envelopes.

A. 2
B. 3
C. 4
D. 6
E. 60/7

I got this far:

Machine C = 6 hours for 6000 envelopes

Then (1/T) = (1/b) +(1/c)

1/2.5 = (1/b) + (1/6)
b= (30/7) for 6000 envelopes or (60/7) for 12000 envelopes.

Why isnt the answer coming up to exactly 8?

EDITED THE OPTIONS

1/A = 2000

1/B+1/C = 6000/2.5=2400 ---------(1)
1/A+ 1/C = 3000 -----------------------(2)

(1) - (2)
1/B-1/A =2400-3000
> 1/B - 2000 = 2400-3000
> 1/B = 1400

Rate = 1400
Work= 12000

Time= 12000/1400 =60/7

Feed me kudos if it is helpful for you :D :lol:
User avatar
BrainLab
User avatar
Current Student
Joined: 10 Mar 2013
Last visit: 26 Jan 2025
Posts: 345
Own Kudos:
Given Kudos: 200
Location: Germany
Concentration: Finance, Entrepreneurship
GMAT 1: 580 Q46 V24
GPA: 3.7
WE:Marketing (Telecommunications)
GMAT 1: 580 Q46 V24
Posts: 345
Kudos: 3,129
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shash
Machine A can process 6000 envelopes in 3 hours. Machines B and C working together but independently can process the same number of envelopes in 2.5 hours. If Machines A and C working together but independently process 3000 envelopes in 1 hour, then how many hours would it take Machine B to process 12000 envelopes.

A. 2
B. 3
C. 4
D. 6
E. 60/7

I got this far:

Machine C = 6 hours for 6000 envelopes

Then (1/T) = (1/b) +(1/c)

1/2.5 = (1/b) + (1/6)
b= (30/7) for 6000 envelopes or (60/7) for 12000 envelopes.

Why isnt the answer coming up to exactly 8?

EDITED THE OPTIONS

This is not the original question. In the original question (from Kaplan) the time given for mashines B and C working together is 2\frac{2}{5} and the correct answer choice is E, which equals to 8 and not \(\frac{60}{7}\)
User avatar
gracie
Joined: 07 Dec 2014
Last visit: 11 Oct 2020
Posts: 1,030
Own Kudos:
Given Kudos: 27
Posts: 1,030
Kudos: 1,943
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Machine A can process 6000 envelopes in 3 hours. Machines B and C working together but independently can process the same number of envelopes in 2.5 hours. If Machines A and C working together but independently process 3000 envelopes in 1 hour, then how many hours would it take Machine B to process 12000 envelopes.

A. 2
B. 3
C. 4
D. 6
E. 60/7

let a,b,c=respective rates
a=2000
(a+c)-(b+c)=a-b=600
b=1400
12000/1400=60/7 hours
E
avatar
ptl0u1
Joined: 04 Jul 2016
Last visit: 10 Dec 2018
Posts: 5
Own Kudos:
Given Kudos: 174
Posts: 5
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Instead of 2.5 hours , 2 hours and (2/5) mins then answer will be 4 hours . Correct?

Posted from GMAT ToolKit
 1   2   
Moderators:
Math Expert
105388 posts
Tuck School Moderator
805 posts