Re: Of the 12 temporary employees in a certain company, 4 will
[#permalink]
10 Jul 2012, 04:52
The general formula for multiplying probabilities is P(A and B) = P(A)*P(B|A) and uses the conditional probability P(B|A). For independent events, the conditional probability P(B|A)=P(B) and the formula simplifies to P(A and B) = P(A)*P(B), it is still called "conditional probability formula". The ordering in this formula is arbitrary logical ordering (first event A, then event B) obtained by tracing a probability tree. It has nothing to do with ordering in time with which you are mixing it up.
In the problems with coin or die tosses, you can label each coin, say 'coin A', 'coin B' ... and trace a probability tree by first considering the outcome for coin A, then coin B, coin C... You DON'T add that to another probability tree by first considering the outcome of coin B, then A, then C ... You use a SINGLE probability tree = single arbitrary logical ordering which has nothing to do with which coin was tossed first or second in time. That is why problems in which you toss coins/dice at the same time are equivalent to problems where you toss then in sequence, because the order is arbitrary logical ordering BY LABELING THEM and tracing a SINGLE probability tree, not by ordering them in time.
In the sibling pair problem, the labels are already there 'junior' and 'senior'. You trace the probability tree either as outcomes for junior first and senior second, or the the other way around BUT NOT BOTH. You are getting a double result because you are trying to add the results of two probability trees, not two 'exclusive events'.
In the coin toss problems, you are tracing a single tree with an arbitrary logical ordering you have chosen, say outcome of 'coin A' first, outcome of 'coin B' second etc. The exclusive events/outcomes are separate branches in that same tree, say {A,B}={H, T} or {T,H}, not part of another tree.