GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 16 Oct 2018, 22:22

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

On Saturday morning, Malachi will begin a camping vacation

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
User avatar
Joined: 06 Apr 2010
Posts: 117
Reviews Badge
On Saturday morning, Malachi will begin a camping vacation  [#permalink]

Show Tags

New post 02 Sep 2010, 12:59
5
19
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

78% (01:37) correct 22% (01:48) wrong based on 955 sessions

HideShow timer Statistics

On Saturday morning, Malachi will begin a camping vacation and he will return home at the end of the first day on which it rains. If on the first three days of the vacation the probability of rain on each day is 0.2, what is the probability that Malachi will return home at the end of the day on the following Monday?

A. 0.008
B. 0.128
C. 0.488
D. 0.512
E. 0.640
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49916
Re: Rain and Return Probability  [#permalink]

Show Tags

New post 02 Sep 2010, 13:36
8
3
udaymathapati wrote:
On Saturday morning, Malachi will begin a camping vacation and he will return home at
the end of the first day on which it rains. If on the first three days of the vacation the
probability of rain on each day is 0.2, what is the probability that Malachi will return
home at the end of the day on the following Monday?
A. 0.008
B. 0.128
C. 0.488
D. 0.512
E. 0.640


We are looking for the probability of the following even NNR: no rain on first day, no rain on second day, rain on third day (Monday).

\(P(NNR)=0.8*0.8*0.2=0.128\).

Answer: B.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
Intern
Intern
avatar
Joined: 09 Aug 2009
Posts: 46
Re: Rain and Return Probability  [#permalink]

Show Tags

New post 03 Sep 2010, 03:48
can you explain it?

/Prabu
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49916
Re: Rain and Return Probability  [#permalink]

Show Tags

New post 03 Sep 2010, 05:35
2
prabu wrote:
can you explain it?

/Prabu


As the probability of rain on each day is 0.2 then the probability of not raining on each day is 1-0.2=0.8. So the probability of not raining on first and second days and raining on third day would be \(P(NNR)=0.8*0.8*0.2=0.128\).

Answer: B.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 09 Aug 2009
Posts: 46
Re: Rain and Return Probability  [#permalink]

Show Tags

New post 03 Sep 2010, 08:02
1
Bunuel wrote:
prabu wrote:
can you explain it?

/Prabu


As the probability of rain on each day is 0.2 then the probability of not raining on each day is 1-0.2=0.8. So the probability of not raining on first and second days and raining on third day would be \(P(NNR)=0.8*0.8*0.2=0.128\).

Answer: B.

Hope it's clear.


Hey i understand this.. but i did not get the following line "Malachi will begin a camping vacation and he will return home at
the end of the first day on which it rains"
what is this first day means here..

Anyway thanks for your time..

/Prabu
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49916
Re: Rain and Return Probability  [#permalink]

Show Tags

New post 03 Sep 2010, 08:09
prabu wrote:
Bunuel wrote:
prabu wrote:
can you explain it?

/Prabu


As the probability of rain on each day is 0.2 then the probability of not raining on each day is 1-0.2=0.8. So the probability of not raining on first and second days and raining on third day would be \(P(NNR)=0.8*0.8*0.2=0.128\).

Answer: B.

Hope it's clear.


Hey i understand this.. but i did not get the following line "Malachi will begin a camping vacation and he will return home at
the end of the first day on which it rains"
what is this first day means here..

Anyway thanks for your time..

/Prabu


Vacation starts on Saturday and Malachi will return at the first day on which it rains. Question asks what is the probability that Malachi will return on next Monday, or what is the probability that it will rain on Monday (and not on Saturday or Sunday).

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 09 Aug 2009
Posts: 46
Re: Rain and Return Probability  [#permalink]

Show Tags

New post 03 Sep 2010, 08:32
Hey i understand this.. but i did not get the following line "Malachi will begin a camping vacation and he will return home at
the end of the first day on which it rains"
what is this first day means here..

Anyway thanks for your time..

/Prabu[/quote]

Vacation starts on Saturday and Malachi will return at the first day on which it rains. Question asks what is the probability that Malachi will return on next Monday, or what is the probability that it will rain on Monday (and not on Saturday or Sunday).

Hope it's clear.[/quote]


Cool.. thanks..

/Prabu
Manager
Manager
avatar
Status: Keep fighting!
Affiliations: IIT Madras
Joined: 31 Jul 2010
Posts: 199
WE 1: 2+ years - Programming
WE 2: 3+ years - Product developement,
WE 3: 2+ years - Program management
Re: Rain and Return Probability  [#permalink]

Show Tags

New post 07 Sep 2010, 03:21
Bunuel, the question says ... returns on the following monday. Following monday means the next immediate monday or the monday after this one? Well, I took it to be the monday which comes in the week after. Guess "following" means the next. Anyways... got to be careful.
Intern
Intern
User avatar
B
Joined: 03 Oct 2016
Posts: 3
Re: On Saturday morning, Malachi will begin a camping vacation  [#permalink]

Show Tags

New post 06 Nov 2016, 07:54
Bunuel wrote:
prabu wrote:
can you explain it?

/Prabu


As the probability of rain on each day is 0.2 then the probability of not raining on each day is 1-0.2=0.8. So the probability of not raining on first and second days and raining on third day would be \(P(NNR)=0.8*0.8*0.2=0.128\).

Answer: B.

Hope it's clear.


Aha, got it now, thanks Bunuel.
Simpler than the convoluted steps I took.
In my haste, I overlooked that the question was asking what the probability would be to return home on Monday only.
I interpreted it as determine the probability of him returning on any of those days.
If the question asked that, would this be correct? (A twist on the original question)(And I guess the question writers intentionally set a trap as this is one of the answer choices)

Probability of rain on Saturday OR Probability of rain on Sunday (given that it didn't rain on Saturday) OR Probability of rain on Monday (given that it didn't rain on Sunday)
= 0.2 + (0.8 x 0.2) + (0.8 x 0.8 x 0.2)
= 0.2 + 0.16 + (0.128 <- The actual answer!)
=0.488
(C)
Manager
Manager
User avatar
S
Status: On a 600-long battle
Joined: 22 Apr 2016
Posts: 138
Location: Hungary
Concentration: Accounting, Leadership
Schools: Erasmus '19
GMAT 1: 410 Q18 V27
GMAT 2: 490 Q35 V23
GMAT ToolKit User
Re: On Saturday morning, Malachi will begin a camping vacation  [#permalink]

Show Tags

New post 05 Apr 2017, 22:16
udaymathapati wrote:
On Saturday morning, Malachi will begin a camping vacation and he will return home at the end of the first day on which it rains. If on the first three days of the vacation the probability of rain on each day is 0.2, what is the probability that Malachi will return home at the end of the day on the following Monday?

A. 0.008
B. 0.128
C. 0.488
D. 0.512
E. 0.640


I would've gotten this question wrong anyway, but my understanding of "on the following Monday is:

Saturday-Sunday-Monday-Tuesday-Wednesday-Thursday-Friday-Saturday-Sunday-(Next)Monday-Tuesday-Wednesday-Thursday-Friday-Saturday-Sunday-(Following)Monday
_________________

"When the going gets tough, the tough gets going!"

|Welcoming tips/suggestions/advices (you name it) to help me achieve a 600|

Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: On Saturday morning, Malachi will begin a camping vacation  [#permalink]

Show Tags

New post 12 Apr 2017, 12:10
3
udaymathapati wrote:
On Saturday morning, Malachi will begin a camping vacation and he will return home at the end of the first day on which it rains. If on the first three days of the vacation the probability of rain on each day is 0.2, what is the probability that Malachi will return home at the end of the day on the following Monday?

A. 0.008
B. 0.128
C. 0.488
D. 0.512
E. 0.640


Since we need to determine the probability that Malachi will return home at the end of the day on the following Monday, we must determine:

P(no rain Sat and no rain Sun and rain Mon) = P(no rain Sat) x P(no rain Sun) x P(rain Mon)

Since the probability of rain is 0.2, the probability of no rain is 1 - 0.2 = 0.8, and thus:

P(no rain Sat) x P(no rain Sun) x P(rain Mon) = 0.8 x 0.8 x 0.2 = 0.128

Answer: B
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

CEO
CEO
User avatar
D
Joined: 12 Sep 2015
Posts: 3000
Location: Canada
Re: On Saturday morning, Malachi will begin a camping vacation  [#permalink]

Show Tags

New post 24 Aug 2017, 12:12
1
Top Contributor
udaymathapati wrote:
On Saturday morning, Malachi will begin a camping vacation and he will return home at the end of the first day on which it rains. If on the first three days of the vacation the probability of rain on each day is 0.2, what is the probability that Malachi will return home at the end of the day on the following Monday?

A. 0.008
B. 0.128
C. 0.488
D. 0.512
E. 0.640


NOTE: if P(rain on a certain day) = 0.2, then we know that P(NO rain on a certain day) = 1 - 0.2 = 0.8

For probability questions, I always ask, "What needs to happen for the desired event to occur?"

For this question P(come home Monday night) = P(no rain on Saturday AND no rain on Sunday AND rain on Monday)

At this point, we can apply what we know about AND probabilities. We get:
P(come home Monday night) = P(no rain on Saturday) X P(no rain on Sunday) X P(rain on Monday)
= (0.8) X (0.8) X (0.2)
= 0.128

Answer:

RELATED VIDEO FROM OUR COURSE

_________________

Brent Hanneson – GMATPrepNow.com
Image
Sign up for our free Question of the Day emails

EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12660
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: On Saturday morning, Malachi will begin a camping vacation  [#permalink]

Show Tags

New post 10 Jan 2018, 20:20
Hi All,

The standard approach to these types of probability questions is to determine the probability of each individual 'event', then multiply those probabilities together. With this question, there's a minor Number Property 'shortcut' at the end that can save you some time (and it helps if you're paying attention to how the answers are 'spaced out.'

Here, we're told:
-the probability of rain occurring on any individual day = 0.2
-thus, the probability of rain NOT occurring on any individual day = 1 - 0.2 = 0.8

For Malachi to return at the end of the day on Monday, the following series of events must occur:
(No rain on Saturday)(No rain on Sunday)(Rain on Monday).

The probability of that exact chain of events is:
(.8)(.8)(.2)

At this point, you could just multiply those numbers together, but here's that math shortcut I referred to earlier: multiplying any positive number by a positive fraction (between 0 and 1) will result in a SMALLER number. Since we're multiplying 3 positive fractions together, the result WILL be less than 0.2.... Thus, the correct answer MUST be either A or B.

You probably already know that 2x2x2 = 8. IF.... you multiplied (.2)(.2)(.2), you would end up with .008 (re: Answer A) - but this is clearly SMALLER than the product that will actually occur (because two of those .2s are actually .8s), so the correct answer CANNOT be A.

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Director
Director
User avatar
P
Joined: 09 Mar 2016
Posts: 940
Re: On Saturday morning, Malachi will begin a camping vacation  [#permalink]

Show Tags

New post 20 May 2018, 04:44
GMATPrepNow wrote:
udaymathapati wrote:
On Saturday morning, Malachi will begin a camping vacation and he will return home at the end of the first day on which it rains. If on the first three days of the vacation the probability of rain on each day is 0.2, what is the probability that Malachi will return home at the end of the day on the following Monday?

A. 0.008
B. 0.128
C. 0.488
D. 0.512
E. 0.640


NOTE: if P(rain on a certain day) = 0.2, then we know that P(NO rain on a certain day) = 1 - 0.2 = 0.8

For probability questions, I always ask, "What needs to happen for the desired event to occur?"

For this question P(come home Monday night) = P(no rain on Saturday AND no rain on Sunday AND rain on Monday)

At this point, we can apply what we know about AND probabilities. We get:
P(come home Monday night) = P(no rain on Saturday) X P(no rain on Sunday) X P(rain on Monday)
= (0.8) X (0.8) X (0.2)
= 0.128

Answer:

RELATED VIDEO FROM OUR COURSE







Hey pushpitkc,

in the video above there is probability problem (what is the probabilty that the product of two picked numbers is positive from this set of numbers( -4, -3, -2, -1, 1, 2, 3 )

i solved it using combinatorics formula (see below), but i couldnt solve it using probability method/formula for some reason

# of total out comes is \(C^2_7=21\)

probability that two numbers are negatives is \(C^2_4=6\)

probability that two numbers are positive is \(C^2_3=3\)

total number of desired probabilities \(C^2_4=6\) + \(C^2_3=3\) = \(9\)

\(\frac{9}{21}\) = \(\frac{3}{7}\)


Now using probability method

now product of two numbers is positive in case two numbers are negative or two numbers are positive

case one: two numbers negative - > there are 4 negative numbers so probability \(\frac{1}{4}\)*\(\frac{1}{3}\)*\(\frac{1}{2}\)*\(1\) = \(\frac{1}{24}\)

case two: two numbers are positive --> there are 3 positive numbers so probabilityis \(\frac{1}{3}\)*\(\frac{1}{2}\)*\(1\) =\(\frac{1}{6}\)


\(\frac{1}{6} +\frac{1}{24} =\frac{5}{24}\)

now i need to find tital number of outcomes ...how to do it using probability formula without using combinatorics formula ? :?

like this ? --> 1/7 *1/6*1/5*1/4*1/3*1/2 *1 :?


many thanks and happy sunday :)
Senior PS Moderator
User avatar
V
Joined: 26 Feb 2016
Posts: 3182
Location: India
GPA: 3.12
Premium Member CAT Tests
On Saturday morning, Malachi will begin a camping vacation  [#permalink]

Show Tags

New post 20 May 2018, 14:12
1
Hi dave13

Please find the method to do the problem if you used probability.

Out of the 7 numbers, we have 3 numbers that are positive and 4 that are negative.
We need to find the number of cases where the product of any two random numbers
is positive.

When the first number picked is negative and second number picked is positive: \(\frac{4}{7}*\frac{3}{6} = \frac{2}{7}\)
When the first number picked is positive and second number picked is negative: \(\frac{3}{7}*\frac{4}{6} = \frac{2}{7}\)

Combined cases when the product can be negative is \(\frac{4}{7}(\frac{2}{7}+\frac{2}{7}\))

P(Product being positive) = 1 - P(Product being negative)
Therefore, the cases when the product is positive is \(1 - \frac{4}{7} = \frac{3}{7}\)

Hope this helps you.
_________________

You've got what it takes, but it will take everything you've got

Senior Manager
Senior Manager
User avatar
G
Joined: 31 May 2017
Posts: 322
GMAT ToolKit User Reviews Badge CAT Tests
Re: On Saturday morning, Malachi will begin a camping vacation  [#permalink]

Show Tags

New post 21 May 2018, 21:09
We need to calculate the probability of raining on day 3.

Probability of not raining on day 1 = 0.8
Probability of not raining on day 2 = 0.8
Probability of raining on day 3 = 0.2

Probability of raining on day 3 = probability of not raining on day 1 * probability of not raining on day 2 * probability of raining on day 3

Probability = 0.8*0.8*0.2 = 0.128

Ans: B
_________________

Please give kudos if it helps

Resources
Ultimate GMAT Quantitative Megathread | ALL YOU NEED FOR QUANT ! ! ! | SC Blogs by Magoosh | How to improve your verbal score | Things i wish i could've done earlier | Ultimate Q51 Guide

GMAT Club Bot
Re: On Saturday morning, Malachi will begin a camping vacation &nbs [#permalink] 21 May 2018, 21:09
Display posts from previous: Sort by

On Saturday morning, Malachi will begin a camping vacation

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.