Points A and B are 120 km apart. A motorcyclist starts from A to B along straight road AB with speed 30 kmph. At the same time a cyclist starts from B along a road perpendicular to road AB, with a speed of 10 kmph. After how many hours will the distance between them be the least?
See attached graphThis problem is basically looking for the shortest hypotenuse in a triangle comprised of biker on road AB and cyclist moving directly perpendicular to AB from point B. Using the graph, we can plug in numbers into the quadratic formula to see what length C is the shortest.
a^2+b^2=c^2
1 Hour: Biker has traveled 30 km and cyclist has traveled 10 km.
90^2 + 10^2 = c^2
8200 = c^2
We don't need to find the square - we can compare values of c^22 Hour: Biker has traveled 60 km and cyclist has traveled 20 km.
60^2+20^ = c^2
4000 = c^2
3 hour: Biker has traveled 90 km and cyclist has traveled 30 km.
30^2 + 30^2 = c^2
1800 = c^2
For each increasing hour, the cyclist and biker move closer together. Out of all the possible answer choices, 3.6 reduces the bikers time the most (and thus the square of a larger speed i.e. 30 km/h) It's also possible to just look at the graph and recognize that the more hours that pass, the shorter the red line between
the biker and cyclist is.
ANSWER: D. 3.6 hoursOne other thing...technically none of the answer choices are correct. Distance would be minimized when the biker hit B and was 40km away from the cyclist traveling perpendicular from line AB: a^2+b^2=c^2 ===> 0^2+40^2=c^2 ===> 1600 = c^2 so wouldn't E actually be the right answer?
Attachments

GRAPH.png [ 11.3 KiB | Viewed 29717 times ]