It is currently 13 Dec 2017, 09:15

Decision(s) Day!:

CHAT Rooms | Ross R1 | Kellogg R1 | Darden R1 | Tepper R1


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

S96-06

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42585

Kudos [?]: 135508 [0], given: 12697

S96-06 [#permalink]

Show Tags

New post 16 Sep 2014, 00:50
Expert's post
11
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

47% (01:33) correct 53% (02:10) wrong based on 106 sessions

HideShow timer Statistics

The three-digit positive integer \(n\) can be written as \(ABC\), in which \(A\), \(B\), and \(C\) stand for the unknown digits of \(n\). What is the remainder when \(n\) is divided by 37?


(1) \(A + \frac{B}{10} + \frac{C}{100} = B + \frac{C}{10} + \frac{A}{100}\)

(2) \(A + \frac{B}{10} + \frac{C}{100} = C + \frac{A}{10} + \frac{B}{100}\)
[Reveal] Spoiler: OA

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135508 [0], given: 12697

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42585

Kudos [?]: 135508 [1], given: 12697

Re S96-06 [#permalink]

Show Tags

New post 16 Sep 2014, 00:50
1
This post received
KUDOS
Expert's post
Official Solution:


The question stem tells us that the positive integer \(n\) has three unknown digits: \(A\), \(B\), and \(C\), in that order. In other words, \(n\) can be written as \(ABC\). Note that in this context, \(ABC\) does not represent the product of the variables \(A\), \(B\), and \(C\), but rather a three-digit integer with unknown digit values. It is important to note that since \(A\), \(B\), and \(C\) stand for digits, their values are restricted to the ten digits 0 through 9. Moreover, \(A\) cannot equal 0, since we know that \(n\) is a "three-digit" integer and therefore must be at least 100.

We are asked for the remainder after \(n\) is divided by 37. We could rephrase this question in a variety of ways, but none of them are particularly better than simply leaving the question as is.

Statement (1): SUFFICIENT. We can translate this statement to a decimal representation, which will be easier to understand. The left side of the equation, in words, is "\(A\) units plus \(B\) tenths plus \(C\) hundredths." We can write this in shorthand: \(A.BC\) (that is, "A point BC"). After performing the same translation to the right side of the equation, we can see that we get the following:
\(A.BC = B.CA\)

Since \(A\), \(B\), and \(C\) stand for digits, we can match up the decimal representations and observe that \(A = B\) and \(B = C\). Thus, all the digits are the same.

This means that we can write \(n\) as \(AAA\), which is simply \(111 \times A\).

Now, 111 factors into \(3 \times 37\), so \(n = 3 \times 37 \times A\). Thus, \(n\) is a multiple of 37, and the remainder after division by 37 is zero.

Statement (2): SUFFICIENT. Again, we can match up the decimal representations of the given equation and find that all the digits are the same. The logic from that point forward is identical to that shown above.


Answer: D
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135508 [1], given: 12697

Intern
Intern
avatar
Joined: 16 Apr 2015
Posts: 5

Kudos [?]: [0], given: 4

GPA: 3.39
Reviews Badge
Re: S96-06 [#permalink]

Show Tags

New post 11 May 2015, 17:39
So, if my understanding is correct, it does not matter if A, B, C is 111, 222, 333, 444, etc. because all of those are contain the prime numbers, 3x37 - correct?

Kudos [?]: [0], given: 4

Intern
Intern
avatar
Joined: 16 Apr 2015
Posts: 5

Kudos [?]: [0], given: 4

GPA: 3.39
Reviews Badge
Re: S96-06 [#permalink]

Show Tags

New post 16 Jun 2015, 08:00
I really liked that question. Very well written and explained.

Kudos [?]: [0], given: 4

Manager
Manager
User avatar
B
Joined: 12 Nov 2016
Posts: 81

Kudos [?]: 2 [0], given: 38

Location: Kazakhstan
Concentration: Entrepreneurship, Finance
Schools: Sloan (S)
GMAT 1: 620 Q36 V39
GPA: 3.2
Re: S96-06 [#permalink]

Show Tags

New post 12 Mar 2017, 18:00
Why I am impressed by 37 - what a magic number! 111, 222, 333, 444, 555, 666, 777, 888, 999 - all divided w/out remainder!

Kudos [?]: 2 [0], given: 38

Intern
Intern
avatar
B
Joined: 30 Jun 2017
Posts: 25

Kudos [?]: 0 [0], given: 62

Re: S96-06 [#permalink]

Show Tags

New post 15 Aug 2017, 10:35
This is a great question. However, while attempting the test I did not get the air of what is happening in this particular problem.
Lessons learnt -
1) 37 divides 111, 222, 333, 444,...,999 completely.
2) The way to represent a three digit number having all digits equal (premise of the question).

Kudos [?]: 0 [0], given: 62

Intern
Intern
avatar
B
Joined: 16 Jul 2013
Posts: 14

Kudos [?]: 2 [0], given: 22

Location: Hungary
Concentration: Entrepreneurship, Marketing
GPA: 3.37
Re: S96-06 [#permalink]

Show Tags

New post 05 Dec 2017, 13:25
I solved it differently. A bit more time consuming, but that's what came to my mind.

From the stem we know that:

ABC = n = 100A + 10B + C

1)
100A + 10B + C = 100B + 10C + A
10B = 11A - C

Plugging this into the stem equation we get:
100A + 11A - C + C = n = 111A

I divided 111 by 37, and voila! :-)

2) Same method gives: n = 111C

Kudos [?]: 2 [0], given: 22

Re: S96-06   [#permalink] 05 Dec 2017, 13:25
Display posts from previous: Sort by

S96-06

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: chetan2u, Bunuel



GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.