GMAT Changed on April 16th - Read about the latest changes here

It is currently 23 May 2018, 04:12

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The remainder when positive integer N is divided by 2 is 1, when divid

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 45266
The remainder when positive integer N is divided by 2 is 1, when divid [#permalink]

Show Tags

New post 24 Apr 2018, 23:30
2
This post received
KUDOS
Expert's post
4
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

72% (02:57) correct 28% (02:25) wrong based on 57 sessions

HideShow timer Statistics

The remainder when positive integer N is divided by 2 is 1, when divided by 3 is 2, when divided by 4 is 3, and when divided by 5 is 4. What is the sum of the digits of the least possible value of N?

(A) 11
(B) 13
(C) 14
(D) 16
(E) 17

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Expert Post
4 KUDOS received
e-GMAT Representative
User avatar
G
Joined: 04 Jan 2015
Posts: 1209
Re: The remainder when positive integer N is divided by 2 is 1, when divid [#permalink]

Show Tags

New post 24 Apr 2018, 23:49
4
This post received
KUDOS
Expert's post
4
This post was
BOOKMARKED

Solution



Given:
• N is a positive integer
• When N is divided by 2, 3, 4, and 5, the remainders are 1, 2, 3, and 4 respectively

To find:
• The sum of the digits of the least possible value of N

Approach and Working:
• The number N can be written as:
    o N = 2a + 1 = 2a + 2 – 1 = 2(a+1) – 1 = 2a’ – 1
    o N = 3b + 2 = 3b’ – 1
    o N = 4c + 3 = 4c’ – 1
    o N = 5d + 4 = 5d’ – 1
• Therefore, the least value of number N = lcm (2, 3, 4, 5) – 1
Or, least (N) = 60 – 1 = 59
• Sum of digits of least (N) = 5 + 9 = 14
Hence, the correct answer is Option C.

Answer: C
_________________












| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com

Manager
Manager
User avatar
B
Joined: 21 Jan 2015
Posts: 243
Location: India
Concentration: Strategy, Marketing
GMAT 1: 620 Q48 V28
WE: Sales (Consumer Products)
GMAT ToolKit User CAT Tests
Re: The remainder when positive integer N is divided by 2 is 1, when divid [#permalink]

Show Tags

New post 24 Apr 2018, 23:56
Ans: C
as it is given that number N leaves reminder of 4 when divided by 5 so : Number must be= 5i+4 where i is an int.
now. we get values of possible N by putting i= 1,2,3,4,5.. and so on.
Possibilities: N= 9, 14,19,24,29,34,39 and so on.
but as given number is not divisible by 2 and 3 so we will lest out the even numbers and multiple of 3 from the list which will leave us possible N= 19, 29, 49, 59, 79.. and so on..
now just follow the conditions and divide these by 2,3,4 and check for reminders. 59 fulfill it. so sum of the digits is5+9=14.
Ans : 14
_________________

--------------------------------------------------------------------
The Mind is Everything, What we Think we Become.
Kudos will encourage many others, like me.
Please Give Kudos Image !!
Thanks :-)

2 KUDOS received
Senior Manager
Senior Manager
avatar
S
Joined: 02 Oct 2017
Posts: 480
Re: The remainder when positive integer N is divided by 2 is 1, when divid [#permalink]

Show Tags

New post 13 May 2018, 03:30
2
This post received
KUDOS
For remainder by 5 to be 4 we need to have unit digit either 4 or 9

If unit digit is 4 then that number is always divisible by 2 so this possibility is out

We need to find number with unit digit 9
Possible numbers are-19,29,39,49,59,69,79,89,99
9 is discarded as sum in options is at least 11
39,69,99 are divisible by 3 so not possible
19,49,79 give remainder 1 by 3 so out
Among Number(29,59,89)above only 59 fulfill criteria
So sum is 14

Give kudos if it helps

Posted from my mobile device
Director
Director
avatar
G
Joined: 07 Dec 2014
Posts: 998
The remainder when positive integer N is divided by 2 is 1, when divid [#permalink]

Show Tags

New post 13 May 2018, 13:02
Bunuel wrote:
The remainder when positive integer N is divided by 2 is 1, when divided by 3 is 2, when divided by 4 is 3, and when divided by 5 is 4. What is the sum of the digits of the least possible value of N?

(A) 11
(B) 13
(C) 14
(D) 16
(E) 17


let x=difference between first two quotients:
x=(n-1)/2-(n-2)/3➡(n+1)/6
thus, n+1 is multiple of 6
let y=difference between last two quotients:
y=(n-3)/4-(n-4)/5➡(n+1)/20
thus, n+1 is a multiple of 20
if n+1 is a multiple of 20 and 6,
then least possible value of n=59
5+9=14
C
Senior Manager
Senior Manager
avatar
G
Joined: 31 Jul 2017
Posts: 342
Location: Malaysia
WE: Consulting (Energy and Utilities)
Re: The remainder when positive integer N is divided by 2 is 1, when divid [#permalink]

Show Tags

New post 14 May 2018, 02:28
Bunuel wrote:
The remainder when positive integer N is divided by 2 is 1, when divided by 3 is 2, when divided by 4 is 3, and when divided by 5 is 4. What is the sum of the digits of the least possible value of N?

(A) 11
(B) 13
(C) 14
(D) 16
(E) 17


The best way to solve this is -

Any number divisible by 5 ends with 0 or 5. Numbers ending with 0 are divisible by 2, hence, we need to consider number ending with 5 + 4. For Ex - 9, 19,29,39,49,59,69,79.. etc.

So, minimum would be 59.
_________________

If my Post helps you in Gaining Knowledge, Help me with KUDOS.. !!

Senior Manager
Senior Manager
avatar
S
Joined: 31 May 2017
Posts: 256
CAT Tests
Re: The remainder when positive integer N is divided by 2 is 1, when divid [#permalink]

Show Tags

New post 14 May 2018, 20:10
Solved this using substituting values

Constraint 1:
The number should not be divisible by 2,3 or 4. So this removes any even number from contention.

Constraint:
When divided by 5, the remainder should be 4. So the number cannot end in 1, 6, 7. Also number cannot end in 0.

From the above 2 constraints , we get that number should end in 9. But at the same time cannot be divisible by 3.

The options are 19,29,39,49,59,69,79,89,99. Out of these numbers
39,69 and 99 are divisible by 3.
19, 49,79 - gives remainder of 1 when divided by 3.
29 - Remainder 1 when divided by 4

59 is the option left which satisfied all constraints. When the digits are added , gives 5+9=14

Ans : C
_________________

Please give kudos if it helps

Resources
Ultimate GMAT Quantitative Megathread | ALL YOU NEED FOR QUANT ! ! ! | SC Blogs by Magoosh | How to improve your verbal score | Things i wish i could've done earlier | Ultimate Q51 Guide

Expert Post
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2442
Re: The remainder when positive integer N is divided by 2 is 1, when divid [#permalink]

Show Tags

New post 15 May 2018, 16:14
Bunuel wrote:
The remainder when positive integer N is divided by 2 is 1, when divided by 3 is 2, when divided by 4 is 3, and when divided by 5 is 4. What is the sum of the digits of the least possible value of N?

(A) 11
(B) 13
(C) 14
(D) 16
(E) 17


Let’s use the last condition first: when N is divided by 5, the remainder is 4. The reason is: 5 is the largest divisor here, so if we list the numbers that satisfies this condition, the numbers will increase faster than those of the other three conditions. Recall that if the remainder is 4 when a number is divided by 5, the units digit must be either 4 or 9. However, it cannot be 4 since we are told that there is a remainder of 1 when the N is divided by 2. Now let’s list the numbers:

9, 19, 29, 39, 49, 59, 69, …

We can also omit the numbers 9, 39, 69, etc. since these numbers are divisible by 3 (we are given that N is not divisible by 3). So we are left with:

19, 29, 49, 59, 79, 89, …

We see that all of these numbers have a remainder of 1 when divided by 2, so let’s check division by 3 and 4:

19/3 = 6 R 1…. No

29/3 = 9 R 2…. Yes; 29/4 = 7 R 1 …. No

49/3 = 16 R 1 …. No

59/3 = 19 R 2…. Yes; 59/4 = 14 R …. Yes

Thus 59 is the least possible value of N and 5 + 9 = 14.

Alternate solution:

Notice that each remainder is the largest possible remainder of their respective divisor (for example, 3 is the largest possible remainder when a number is divided by 4). Therefore, if we can the find a number that has remainder of 0 when it’s divided by 2, 3, 4 and 5, and then subtract 1 from it, we will have a suitable value for N. Since we want the least possible value of N, we want to find the smallest positive integer that is divisible by 2, 3, 4 and 5. This number is, of course, the least common multiple of the 4 numbers and it is:

LCM(2, 3, 4, 5) = LCM(2, 3, 2^2, 5) = 2^2 x 3 x 5 = 60.

Since 60 is the LCM of (2, 3, 4, 5), 60 - 1 = 59 is the least possible value of N. Let’s verify it:

59/2 = 29 R 1; 59/3 = 19 R 2; 59/4 = 14 R 3 and 59/5 = 11 R 4.

Thus the sum of the digits of N = 5 + 9 = 14.

Answer: C
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Re: The remainder when positive integer N is divided by 2 is 1, when divid   [#permalink] 15 May 2018, 16:14
Display posts from previous: Sort by

The remainder when positive integer N is divided by 2 is 1, when divid

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.