Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

To save money, Arkadelphia Cream Cheese will reduce each dimension of [#permalink]

Show Tags

31 Oct 2014, 12:30

1

This post received KUDOS

3

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

65% (hard)

Question Stats:

59% (01:33) correct 41% (01:04) wrong based on 280 sessions

HideShow timer Statistics

To save money, Arkadelphia Cream Cheese will reduce each dimension of its rectangular box container (which is entirely full of cream cheese) by 50%, and reduce the price it charges its consumers by 50% as well. By what percentage does this increase the price-per-cubic-inch that each consumer will pay for cream cheese?

Re: To save money, Arkadelphia Cream Cheese will reduce each dimension of [#permalink]

Show Tags

31 Oct 2014, 12:31

If the current volume is L * W * H, then the new volume is 12 (L) * 12 (W) * 12 (H), or 18 * LWH. So the new portion is 1/8 the size of the old portion. But the new cost is only ½ the cost, meaning that if the old price-per-unit was 1:1, now it’s 12 : 18, or 4:1. So the consumer is paying 400% of what it used to, or 300% more than it used to. The answer is therefore D.
_________________

Appreciate the efforts...KUDOS for all Don't let an extra chromosome get you down..

Re: To save money, Arkadelphia Cream Cheese will reduce each dimension of [#permalink]

Show Tags

31 Oct 2014, 20:27

3

This post received KUDOS

2

This post was BOOKMARKED

JusTLucK04 wrote:

To save money, Arkadelphia Cream Cheese will reduce each dimension of its rectangular box container (which is entirely full of cream cheese) by 50%, and reduce the price it charges its consumers by 50% as well. By what percentage does this increase the price-per-cubic-inch that each consumer will pay for cream cheese?

1. No change 2. 50% 3. 100% 4. 300% 5. 400%

Answer is D

Explanation:

Take smart numbers Let, L = 20: B = 10: H= 10 of initial box and Price = 50$

Re: To save money, Arkadelphia Cream Cheese will reduce each dimension of [#permalink]

Show Tags

06 Feb 2015, 08:33

Thank you. I picked numbers to do it, like this:

L*W*H are the dimesnions of the container. I chose 1*2*2 respectively, for each dimension.

The container initially had a capacity of 1*2*2 = 4. Lets give it a price of 40. Then per cubic inch it would be 40/4 = 10.

The container was then reduced in half, so it became: 1/2*2/2*2/2 = 1/2. The price was reduced in half, so it became 20. Then per cubic inch it would be 20 / (1/2) = 40.

Now, I find that there are 2 tricky parts: 1) By what percentage does this increase the price-per-cubic-inch that each consumer will pay for cream cheese? 2) There are 3 dimensions. So, if you assume that the box at first had a capacity of 10, which was then reduced into 5, you would have got it wrong.

To save money, Arkadelphia Cream Cheese will reduce each dimension of [#permalink]

Show Tags

05 Nov 2015, 12:10

Let Current L:B:H= 2:2:2 => Current Volume = 2x2x2 = 8

New Dimension = 1:1:1 New Volume = 1x1x1 = 1

Let Current Price is 2 bugs. So, new price will be 1 bug

So now we can say in current scenario we are paying 2 bugs for 8 candies OR 1 bug for 4 candies Or 0.25 bug for 1 candy But now we are paying 1 bug for 1 candy.

To save money, Arkadelphia Cream Cheese will reduce each dimension of [#permalink]

Show Tags

09 Nov 2015, 23:33

New volume will be 1/2*1/2*1/2 or 1/8 of old New Price …………………………………1/2 of old Let, volume…………price…………price per unit Old : 8…………….. 8……………… 1 New: 1………………4………………..4 Increase= (4-1)/1*100%=300%

To save money, Arkadelphia Cream Cheese will reduce each dimension of its rectangular box container (which is entirely full of cream cheese) by 50%, and reduce the price it charges its consumers by 50% as well. By what percentage does this increase the price-per-cubic-inch that each consumer will pay for cream cheese?

1. No change 2. 50% 3. 100% 4. 300% 5. 400%

This question is well suited to PLUGGING in nice values.

Let's say that the ORIGINAL dimensions of the box are 2x2x2, which means the volume is 8 cubic inches. For convenience, let's say the ORIGINAL price is $8. So, the consumer pays $1 per cubic inch

Now, we'll examine the ALTERED box. If each side is reduced by 50%, then each side has length 1. In other words, the dimensions of the ALTERED box are 1x1x1, which means the volume is 1 cubic inch. If the price of the cheese is reduced by 50%, the NEW PRICE is $4. So, the consumer pays $4 per cubic inch

The price per cubic inch increases from $1 per cubic inch to $4 per cubic inch, which represents a PERCENT INCREASE of 300%

Re: To save money, Arkadelphia Cream Cheese will reduce each dimension of [#permalink]

Show Tags

17 Nov 2017, 15:39

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________