Last visit was: 19 Nov 2025, 03:56 It is currently 19 Nov 2025, 03:56
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
605-655 Level|   Min-Max Problems|   Statistics and Sets Problems|                              
User avatar
Walkabout
Joined: 02 Dec 2012
Last visit: 30 Oct 2025
Posts: 172
Own Kudos:
Given Kudos: 35
Products:
Posts: 172
Kudos: 28,187
 [1040]
79
Kudos
Add Kudos
959
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [424]
186
Kudos
Add Kudos
237
Bookmarks
Bookmark this Post
avatar
gmat1013
Joined: 16 Aug 2013
Last visit: 28 May 2014
Posts: 2
Own Kudos:
173
 [172]
Given Kudos: 3
Concentration: Marketing, Strategy
Posts: 2
Kudos: 173
 [172]
128
Kudos
Add Kudos
44
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [62]
8
Kudos
Add Kudos
54
Bookmarks
Bookmark this Post
sunshinewhole
Bunuel
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.


to minimize y we took 84, we cud have valued all the rope lengths to our minimum=a.

Because e, f, and g cannot be less than the median, which is d=84 (\(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\)).

Similar questions to practice:
gmat-diagnostic-test-question-79347.html
seven-pieces-of-rope-have-an-average-arithmetic-mean-lengt-144452.html
a-set-of-25-different-integers-has-a-median-of-50-and-a-129345.html
the-median-of-the-list-of-positive-integers-above-is-129639.html
in-a-certain-set-of-five-numbers-the-median-is-128514.html
given-distinct-positive-integers-1-11-3-x-2-and-9-whic-109801.html
set-s-contains-seven-distinct-integers-the-median-of-set-s-101331.html
three-boxes-have-an-average-weight-of-7kg-and-a-median-weigh-99642.html
three-straight-metal-rods-have-an-average-arithmetic-mean-148507.html

Hope it helps.
User avatar
aeglorre
Joined: 12 Jan 2013
Last visit: 21 Sep 2014
Posts: 105
Own Kudos:
226
 [23]
Given Kudos: 47
Posts: 105
Kudos: 226
 [23]
19
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

They're telling us that:\(L = 4S + 14\), and they want us to maximize L, thus we plug in options to solve for S such that we maximize S (this maximizes L). So our answer is the option that gives us: \(S* = \frac{(L -14)}{4}\), where * stands for the maximum value of S given the options

The answer needs to be divisible by four after subtraction with 14. The only of the options that are capable of this are B and D (104/4 = 26 and 120/4 = 30). A is obviously not a viable option since the middle value is 84.

Of course, they're asking for "LONGEST possible value" so naturally you take the option that has the highest value of the two: So our answer is D.
General Discussion
avatar
Drik
Joined: 16 Apr 2009
Last visit: 22 May 2018
Posts: 14
Own Kudos:
59
 [3]
Given Kudos: 12
Posts: 14
Kudos: 59
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.

Thanks Bunnel..
Could you please elaborate more about WHY "We need to maximize g. Now, to maximize g, we need to minimize all other terms." I just want to understand how does it work.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [3]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Drik
Bunuel
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.

Thanks Bunnel..
Could you please elaborate more about WHY "We need to maximize g. Now, to maximize g, we need to minimize all other terms." I just want to understand how does it work.

Because the question asks to find the maximum possible length of the longest piece of rope, which we denoted as g.
avatar
Revenge2013
Joined: 11 Jan 2013
Last visit: 10 Feb 2014
Posts: 12
Own Kudos:
125
 [15]
Given Kudos: 12
Location: United States
Posts: 12
Kudos: 125
 [15]
11
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
We can save a little bit of time by cancelling out the "7" before multiplying the mean by it:

(a+a+a+84+84+84+(14+4a))/7=68

=> (7a + 266)/7=68
=> a + 38 = 68
=> a=30
=> g=4(30)+14=134
avatar
krish1chaitu
Joined: 03 Jan 2014
Last visit: 22 Apr 2018
Posts: 1
Own Kudos:
1
 [1]
Given Kudos: 21
Posts: 1
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
pls help me here! Why cant we just take all the values as 84 itself. :?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [4]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
krish1chaitu
pls help me here! Why cant we just take all the values as 84 itself. :?

We are told that the average length is 64, a median length is 84 centimeters and the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope. How can all the pieces be 84 centimeters from this?

Complete solution is here: seven-pieces-of-rope-have-an-average-arithmetic-mean-lengt-144452.html#p1159013

Also, check similar questions here: seven-pieces-of-rope-have-an-average-arithmetic-mean-lengt-144452.html#p1211023

Hope this helps.
User avatar
GGMAT760
Joined: 22 Feb 2014
Last visit: 13 Jan 2015
Posts: 22
Own Kudos:
131
 [2]
Given Kudos: 14
Posts: 22
Kudos: 131
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.

I tried to solve this question by this approach but I got wrong answer choice..Can you please explain why I cannot use this approach? why I am wrong here..

Mean = 1st and last term/2 (smallest x + largest y/2)
Given Mean = x+y/2 = 68
x+y = 136
now replace y= 4x+14
5x+14= 136
x= 24.5
which gives Ans choice E.....
PLS explain...
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [4]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
drkomal2000
Bunuel
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.

I tried to solve this question by this approach but I got wrong answer choice..Can you please explain why I cannot use this approach? why I am wrong here..

Mean = 1st and last term/2 (smallest x + largest y/2)
Given Mean = x+y/2 = 68
x+y = 136
now replace y= 4x+14
5x+14= 136
x= 24.5
which gives Ans choice E.....
PLS explain...

The lengths of the pieces of the rope does not form an evenly spaced set to use (mean)=(first+last)/2.

Does this make sense?
User avatar
ronr34
Joined: 08 Apr 2012
Last visit: 10 Oct 2014
Posts: 248
Own Kudos:
250
 [1]
Given Kudos: 58
Posts: 248
Kudos: 250
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sunshinewhole
Bunuel

Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.


to minimize y we took 84, we cud have valued all the rope lengths to our minimum=a.
It's a little confusing....
Since we have the equation \(g=4a+14\), to maximize g, we also need to maximize a... isn't this the case?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [5]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
ronr34
sunshinewhole
Bunuel

Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.


to minimize y we took 84, we cud have valued all the rope lengths to our minimum=a.
It's a little confusing....
Since we have the equation \(g=4a+14\), to maximize g, we also need to maximize a... isn't this the case?

No. Because we have fixed total length of the rope: 7*68 centimeters. If you increase a, you'd be decreasing g.
User avatar
BrainLab
User avatar
Current Student
Joined: 10 Mar 2013
Last visit: 26 Jan 2025
Posts: 345
Own Kudos:
3,129
 [6]
Given Kudos: 200
Location: Germany
Concentration: Finance, Entrepreneurship
GMAT 1: 580 Q46 V24
GPA: 3.7
WE:Marketing (Telecommunications)
GMAT 1: 580 Q46 V24
Posts: 345
Kudos: 3,129
 [6]
6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
For the solution we don't even need an arithmetic mean. The median has a property that (first number + last number)/2 = median (in case of odd number of values) --> we have smallest number=x and largest number = 4x + 14

(4x+14+x)/2=84 --> x ≈ 30 --> 4x+14=134 (D)
avatar
mulhinmjavid
Joined: 12 Aug 2014
Last visit: 24 Feb 2015
Posts: 11
Own Kudos:
Given Kudos: 72
Posts: 11
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.


Im unable to understand that how minimizing all other terms would maximize value of g, can you please explain?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [3]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
mulhinmjavid
Bunuel
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.


Im unable to understand that how minimizing all other terms would maximize value of g, can you please explain?


Answer this: the sum of two positive integers is 10. What is the maximum possible value of the largest of the integers?
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,977
Own Kudos:
8,389
 [9]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,977
Kudos: 8,389
 [9]
7
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

We need to first recognize that we are working with a maximum problem. This means that of the seven pieces of rope, we must make 6 of those pieces as small as we possibly can, within the confines of the given information, and doing so will maximize the length of the 7th piece.

We are first given that seven pieces of rope have an average (arithmetic mean) length of 68 centimeters. From this we can determine the sum.

average = sum/quantity

sum = average x quantity

sum = 68 x 7 = 476

Next we are given that the median length of a piece of rope is 84 centimeters. Thus when we arrange the pieces of rope from least length to greatest, the middle length (the 4th piece) will have a length of 84 centimeters. We also must keep in mind that we can have pieces of rope of the same length. Let's first label our seven pieces of rope with variables or numbers, starting with the shortest piece and moving to the longest piece. We can let x equal the shortest piece of rope, and m equal the longest piece of rope.

piece 1: x

piece 2: x

piece 3: x

piece 4: 84

piece 5: 84

piece 6: 84

piece 7: m

Notice that the median (the 4th rope) is 84 cm long. Thus, pieces 5 and 6 are either equal to the median, or they are greater than the median. In keeping with our goal of minimizing the length of the first 6 pieces, we will assign 84 to pieces 5 and 6 to make them as short as possible. Similarly, we have assigned a length of x to pieces 1, 2, and 3.

We can plug these variables into our sum equation:

x + x + x + 84 + 84 + 84 + m = 476

3x + 252 + m = 476

3x + m = 224

We also given that the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope. So we can say:

m = 14 + 4x

We can now plug 14 + 4x in for m into the equation 3x + m = 224. So we have:

3x + 14 + 4x = 224

7x = 210

x = 30

Thus, the longest piece of rope is 4(30) + 14 = 134 centimeters.

Answer is D.
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,337
 [4]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,337
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Walkabout
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152

So, we have 7 rope lengths.
If the median length is 84, then the lengths (arranged in ascending order) look like this: {_, _, _, 84, _, _, _}

The length of the longest piece of rope is 14 cm more than 4 times the length of the shortest piece of rope.
Let x = length of shortest piece.
This means that 4x+14 = length of longest piece.
So, we now have: {x, _, _, 84, _, _, 4x+14}

Our task is the maximize the length of the longest piece.
To do this, we need to minimize the other lengths.
So, we'll make the 2nd and 3rd lengths have length x as well (since x is the shortest possible length)
We get: {x, x, x, 84, _, _, 4x+14}

Since 84 is the middle-most length, the 2 remaining lengths must be greater than or equal to 84.
So, the shortest lengths there are 84.
So, we get: {x, x, x, 84, 84, 84, 4x+14}

Now what?

At this point, we can use the fact that the average length is 68 cm.
There's a nice rule (that applies to MANY statistics questions) that says:
the sum of n numbers = (n)(mean of the numbers)
So, if the mean of the 7 numbers is 68, then the sum of the 7 numbers = (7)(68) = 476

So, we now now that x+x+x+84+84+84+(4x+14) = 476
Simplify to get: 7x + 266 = 476
7x = 210
x=30

If x=30, then 4x+14 = 134
So, the longest piece will be 134 cm long.

Answer = D

RELATED VIDEO
User avatar
santro789
Joined: 30 Apr 2013
Last visit: 22 Feb 2020
Posts: 58
Own Kudos:
Given Kudos: 9
Posts: 58
Kudos: 10
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Where could I find this concept of Maximum and Minimum? I never came across this in my studies so far.
 1   2   
Moderators:
Math Expert
105379 posts
Tuck School Moderator
805 posts