Last visit was: 19 Nov 2025, 09:29 It is currently 19 Nov 2025, 09:29
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Hussain15
User avatar
Retired Moderator
Joined: 18 Jun 2009
Last visit: 07 Jul 2021
Posts: 1,076
Own Kudos:
3,476
 [98]
Given Kudos: 157
Status:The last round
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
GMAT 1: 680 Q48 V34
Posts: 1,076
Kudos: 3,476
 [98]
10
Kudos
Add Kudos
88
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,287
 [49]
21
Kudos
Add Kudos
28
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,287
 [11]
6
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
User avatar
BarneyStinson
Joined: 21 Jul 2009
Last visit: 24 Sep 2010
Posts: 217
Own Kudos:
500
 [2]
Given Kudos: 22
Concentration: World Domination, Finance, Political Corporatization, Marketing, Strategy
Schools:LBS, INSEAD, IMD, ISB - Anything with just 1 yr program.
Posts: 217
Kudos: 500
 [2]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hussain15
If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

It will be great to see how do you guys approach this lethal one.

Given x > 2y. Have to substantiate if 3x + 2y < 18.

Stmt-1: x < 2 + y.
Keep substituting different values for y, we get ranges for x based on the stimulus condition and this statement, substitute these different values and we notice that certain values are applicable while many others aren't applicable to substantiate the posed question. Therefore, NS.

Stmt-2: can be rephrased as x > y - 2.
Do the same method as above, same situation, no definitive answer. Therefore, NS.

combining both the statements, still substituting all possible values for y and deriving ranges for x, we can't really substantiate the given equation.

My answer is E. I wonder if there is a simpler way of solving problems of this kind. I used the brute force approach of substituting valid numbers for y and ended up getting wierder ranges for x and again, choose something which accidentally would substantiate the equation and mostly certain other numbers that do not. Took me more than a 10 mins handling work simultaneously, and if such questions appear on the real deal, I might as well give up on GMAT and pursue a PhD in Pure Math.
User avatar
Hussain15
User avatar
Retired Moderator
Joined: 18 Jun 2009
Last visit: 07 Jul 2021
Posts: 1,076
Own Kudos:
3,476
 [1]
Given Kudos: 157
Status:The last round
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
GMAT 1: 680 Q48 V34
Posts: 1,076
Kudos: 3,476
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
Hussain15
If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

It will be great to see how do you guys approach this lethal one.

I would solve this question with graphic approach, by drawing the lines. With this approach you will "see" that the answer is A. But we can do it with algebra as well.

x/y>2 tells us that x and y are either both positive or both negative, which means that all points (x,y) satisfying given inequality are in I or III quadrants. When they are both negative (in III quadrant) inequality 3x+2y<18 is always true, so we should check only for I quadrant.

In I quadrant x and y are both positive and we can rewrite x/y>2 as x>2y>0 (remember x>0 and y>0).

(1) x-y<2.

Subtract inequalities x>2y and x-y<2 (we can do this as signs are in opposite direction) --> x-(x-y)>2y-2 --> y<2.

Now add inequalities x-y<2 and y<2 (we can do this as signs are in the same direction) --> x-y+y<2+2 --> x<4.

We got y<2 and x<4. If we take maximum values x=4 and y=2 and substitute in 3x+2y<18, we'll get 12+4=12<18.

Sufficient.

(2) y-x<2 and x>2y:
x=3 and y=1 --> 3x+2y=11<18 true.
x=11 and y=5 --> 3x+2y=43<18 false.
Not sufficient.

Answer: A.

OA is "A". Thanks for detailed answer.

You have plugged the numbers in option 2, can it be done algeberically??
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
778,287
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,287
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hussain15
OA is "A". Thanks for detailed answer.

You have plugged the numbers in option 2, can it be done algeberically??

For (2) we have:
y-2<x and
0<2y<x.

We'll be able to find the pair of (x,y) when 3x+2y<18 holds true and also when 3x+2y<18 doesn't hold true. As the lower limits for (x,y) is zero (x and y can take very small values ensuring 3x+2y<18 to hold true) and there is no upper limit for this pair (x and y can take huge values ensuring 3x+2y<18 not to hold true).

This question is quite hard and I really think that the best way to solve it is by drawing the lines OR by number plugging.
avatar
sandeepuc
Joined: 11 Oct 2009
Last visit: 03 Feb 2011
Posts: 12
Own Kudos:
3
 [1]
Given Kudos: 6
Posts: 12
Kudos: 3
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I spent 5 min for this question with incorrect ans .. There was no way I could have solved this question .. Very nice explanation Brunel ..

But I failed to understand the theory of addition and substraction for equalities with same sign and opposite signs respective .. Can you pls throw some light ..
User avatar
alphastrike
Joined: 01 Jun 2010
Last visit: 16 Jul 2012
Posts: 22
Own Kudos:
Given Kudos: 9
Location: United States
Schools: Harvard Business School (HBS) - Class of 2014
GMAT 1: 730 Q47 V44
GPA: 3.53
Schools: Harvard Business School (HBS) - Class of 2014
GMAT 1: 730 Q47 V44
Posts: 22
Kudos: 19
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Hussain15
If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

It will be great to see how do you guys approach this lethal one.

I would solve this question with graphic approach, by drawing the lines. With this approach you will "see" that the answer is A. But we can do it with algebra as well.

\(\frac{x}{y}>2\) tells us that \(x\) and \(y\) are either both positive or both negative, which means that all points \((x,y)\) satisfying given inequality are either in I or III quadrant. When they are both negative (in III quadrant) inequality \(3x+2y<18\) is always true, so we should check only for I quadrant, or when both \(x\) and \(y\) are positive.

In I quadrant, as \(x\) and \(y\) are both positive, we can rewrite \(\frac{x}{y}>2\) as \(x>2y>0\) (remember \(x>0\) and \(y>0\)).

So basically question becomes: If \(x>0\) and \(y>0\) and \(x>2y>0\), is \(3x+2y<18\)?

(1) \(x-y<2\).

Subtract inequalities \(x>2y\) and \(x-y<2\) (we can do this as signs are in opposite direction) --> \(x-(x-y)>2y-2\) --> \(y<2\).

Now add inequalities \(x-y<2\) and \(y<2\) (we can do this as signs are in the same direction) --> \(x-y+y<2+2\) --> \(x<4\).

We got \(y<2\) and \(x<4\). If we take maximum values \(x=4\) and \(y=2\) and substitute in \(3x+2y<18\), we'll get \(12+4=16<18\).

Sufficient.

(2) \(y-x<2\) and \(x>2y\):
\(x=3\) and \(y=1\) --> \(3x+2y=11<18\) true.
\(x=11\) and \(y=5\) --> \(3x+2y=43<18\) false.

Not sufficient.

Answer: A.

+1 already for a great explanation.

Follow-up question: Would you mind detailing a graphical approach to this problem? I haven't taken a math course in 7 years so am a little rusty. Knowing how to solve such problems with a graph seems like it would be very useful.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
778,287
 [3]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,287
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
alphastrike


+1 already for a great explanation.

Follow-up question: Would you mind detailing a graphical approach to this problem? I haven't taken a math course in 7 years so am a little rusty. Knowing how to solve such problems with a graph seems like it would be very useful.

Great post by Walker about the graphic approach: graphic-approach-to-problems-with-inequalities-68037.html

Interestingly he uses this same question for explanation.
avatar
sunnyarora
Joined: 14 Jun 2010
Last visit: 22 Apr 2012
Posts: 14
Own Kudos:
Given Kudos: 2
Location: Singapore
Concentration: Strategy
WE:Information Technology (Consulting)
Posts: 14
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Given x/y > 2.
i. x-y < 2: for this to be possible x and y have to be negative. Now since x and y are both negative, the equation in question will always result in a negative number. Hence, SUFFICIENT.

ii. y-x <2: For this to be possible x and y have to be positive. Now since x and y both are positive and x-y>-2, multiple solutions exist. Hence, NOT SUFFICIENT.

Therefore, answer is A.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,287
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sunnyarora
Given x/y > 2.
i. x-y < 2: for this to be possible x and y have to be negative. Now since x and y are both negative, the equation in question will always result in a negative number. Hence, SUFFICIENT.

ii. y-x <2: For this to be possible x and y have to be positive. Now since x and y both are positive and x-y>-2, multiple solutions exist. Hence, NOT SUFFICIENT.

Therefore, answer is A.
OA for this question is A, but your reasoning is not correct:

For (1) \(x=2>0\) and \(y=0.5>0\) satisfy both \(\frac{x}{y}>2\) and \(x-y<2\), so x and y can be positive as well.

For (2) \(x=-2<0\) and \(y=-0.5>0\) satisfy both \(\frac{x}{y}>2\) and \(y-x<2\), so x and y can be negative as well.

Solution for this problem is in earlier posts.
avatar
startafresh
Joined: 04 Jul 2013
Last visit: 06 Jul 2014
Posts: 1
Given Kudos: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel,

Thank you for the great solution.
With regards to using graphs to solving the problem, do we get a grid kind of pad to be able to plot accurately and with ease?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
778,287
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,287
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
startafresh
Hi Bunuel,

Thank you for the great solution.
With regards to using graphs to solving the problem, do we get a grid kind of pad to be able to plot accurately and with ease?

This is what the scratchpad and pen in the test center will look like:
Attachment:
GMAT_Scratchpad.jpg
GMAT_Scratchpad.jpg [ 480.53 KiB | Viewed 19421 times ]
Remember, in the GMAT testing center the scratch paper that is provided is laminated and you are given a sharp-tip erasable marker to use.
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,703
 [1]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,703
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Mo2men


Hi Bunuel,

In statement 1, you got y<2 and x<4 but when x=2 & y=1 or even your point x=4 & y=2 so x/y>2 is not satisfied because 2/1 or 4/2 is not bigger 2. How come still statement 1 sufficient?

Thanks

Hi, responding to your Pm...

Since you have asked here only the above doubt...
y<2 and x<4.... you cannot take them as y=2 and x=4 as it is given both are less than these quantities...
so if y=1.9 .. statement 1 says x-y<2 or x-1.9<2 or x<3.9, so it satisfies x<4..
however if we take the values of x and y slightly more than the max possible(x<4).. x=4and (x<2)..y=2, we find value of eq <18.. so suff
User avatar
Mo2men
Joined: 26 Mar 2013
Last visit: 09 May 2023
Posts: 2,439
Own Kudos:
1,478
 [1]
Given Kudos: 641
Concentration: Operations, Strategy
Schools: Erasmus (II)
Products:
Schools: Erasmus (II)
Posts: 2,439
Kudos: 1,478
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
If (x/y)>2, is 3x+2y<18?

x/y>2 means that both x & y have same sign.

(1) x-y < 2

Let x=3 & y=5/4....... check x/y=12/5=2.4>2

Check statement x-y<2.....3 -1.25=1.75 <2 ......So (3*3) + (2*5/4)<18..........(Note that you can choose positive numbers with narrow range such 2 & 5/6 and will achieve same answer Yes )

Let x=-10 & y=-1......check x/y=-10/-1=10>2

Check statement x-y<2.....-10+1=-9 <2............So (-10*3)+ (-1*2)<18.............Yes (Note that any negative numbers that satisfy both x/y> and fact 1 will always answer question with Yes)

Sufficient


(2) y-x < 2

Let x=3 & y=5/4....... check x/y=12/5=2.4>2

Check statement y-x<2.....1.25 - 3=-1.75 <2 ......So (3*3) + (2*5/4)<18.....Answer is Yes

Let x=10 & y=1.......check x/y=10>2

Check statement y-x<2.......1-10=-9<2................So (3*10) + (2*1)<18.....Answer is NO

Insufficient

Answer: A

This question needs high skills to spot the strategic numbers an spot pattern also.
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
12,806
 [1]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,806
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi All,

We're told X/Y > 2 which means that X and Y are either BOTH positive or BOTH negative. The question asks if (3X + 2Y) < 18. This is a YES/NO question. This DS question has some useful Number Properties in it and can be solved by TESTing VALUES.

To start, there are some patterns worth noting:
If both X and Y are NEGATIVE, then the answer to the question is YES (and there'd be no reason to even do the math).
If both X and Y are POSITIVE, then the math IS required because the answer to the question COULD be YES or NO (depending on how big X and Y are).

1) (X - Y) is less than 2

This tells us that X and Y must be relatively "close" to one another, BUT we also know that X/Y > 2, which means that X is MORE THAN TWICE Y. These 2 Facts severely LIMIT the possibilities...

X = 2, Y = 1/2....3(2) + 2(1/2) IS < 18 The answer is YES
X = 3, Y = 1.1....3(3) + 2(1.1) IS < 18 The answer is YES
X CAN'T = 4 (or larger) because there's no value for Y that "fits" both Facts
If X and Y are negative, then we get another YES
Fact1 is SUFFICIENT

2) (Y - X) is less than 2

Here, we can use any of our TESTs from Fact 1
X = 2, Y = 1/2 ....The answer is YES

But we also need to consider any other possibilities...
X = 100, Y = 1....3(100 + 2(1) is NOT < 18 and the answer is NO
Fact 2 is INSUFFICIENT

Final Answer:

GMAT assassins aren't born, they're made,
Rich
User avatar
shanks2020
Joined: 02 Dec 2018
Last visit: 21 Mar 2024
Posts: 239
Own Kudos:
Given Kudos: 70
Posts: 239
Kudos: 39
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Hussain15
OA is "A". Thanks for detailed answer.

You have plugged the numbers in option 2, can it be done algeberically??

For (2) we have:
y-2<x and
0<2y<x.

We'll be able to find the pair of (x,y) when 3x+2y<18 holds true and also when 3x+2y<18 doesn't hold true. As the lower limits for (x,y) is zero (x and y can take very small values ensuring 3x+2y<18 to hold true) and there is no upper limit for this pair (x and y can take huge values ensuring 3x+2y<18 not to hold true).

This question is quite hard and I really think that the best way to solve it is by drawing the lines OR by number plugging.

Thanks Bunuel!!!
Does that mean statement 2 and option cannot have an algebraic solution and we have to think intuitively. how would we know while solving for any general inequality that we wont be able to arrive at a boundary condition for X and Y with the help of equations, the way we got for statement 1.
User avatar
donaldmcdonald
Joined: 12 Sep 2020
Last visit: 14 Feb 2022
Posts: 35
Own Kudos:
Given Kudos: 143
Products:
Posts: 35
Kudos: 24
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Dear Bunuel,

For this question you wrote you would solve this question with graphic approach.

However, for below question you wrote "not a good candidate for graphic approach"
https://gmatclub.com/forum/is-x-y-2-1-x ... l#p1247939

Additionally, you solve below questions by adding inequalities together
https://gmatclub.com/forum/is-m-z-0-1-m ... 06381.html
https://gmatclub.com/forum/is-xy-0-1-x- ... 14731.html

Can you please tell me on what basis or when would you prefer to use graphic approach? Lets say you face a question and decide whether to use graphic or not...

Many thx in advance
User avatar
stoned
Joined: 19 Feb 2022
Last visit: 12 Apr 2024
Posts: 57
Own Kudos:
Given Kudos: 366
Location: India
GMAT 1: 710 Q49 V37
GMAT 2: 750 Q50 V40
GPA: 3.65
GMAT 2: 750 Q50 V40
Posts: 57
Kudos: 37
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel
-->Please suggest whether this approach is correct or not.

\(\frac{x}{y}>2\) and \(3x+2y<18\)

\(3x+2y<18\) --> \(y (3\frac{x}{y}+2)<18\)

in this equation \( (3\frac{x}{y} +2)\) is always >8 as \(\frac{x}{y}>2\)

So the question is asking whether \(y <2.25\)

Statement 1

\(x-y<2\) --> \( y(\frac{x}{y}-1)<2\)

and as \(\frac{x}{y}>2\), this tells that \(y<2\) always [hence Y<2.25 always] therefore this Statement is Sufficient.

Statement 2

\(y-x<2\) --> \( y(\frac{x}{y}-1)>-2\)

This tells us that \(y>-2\) so y may or may not be >2.25 therefore this Statement is not Sufficient.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,586
Own Kudos:
Posts: 38,586
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105389 posts
496 posts