Last visit was: 19 Nov 2025, 12:17 It is currently 19 Nov 2025, 12:17
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,338
 [13]
2
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
User avatar
satya2029
Joined: 10 Dec 2017
Last visit: 29 Sep 2025
Posts: 231
Own Kudos:
Given Kudos: 138
Location: India
Posts: 231
Kudos: 249
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
CareerGeek
Joined: 20 Jul 2017
Last visit: 19 Nov 2025
Posts: 1,292
Own Kudos:
Given Kudos: 162
Location: India
Concentration: Entrepreneurship, Marketing
GMAT 1: 690 Q51 V30
WE:Education (Education)
GMAT 1: 690 Q51 V30
Posts: 1,292
Kudos: 4,271
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
GMATinsight
User avatar
Major Poster
Joined: 08 Jul 2010
Last visit: 19 Nov 2025
Posts: 6,839
Own Kudos:
16,354
 [1]
Given Kudos: 128
Status:GMAT/GRE Tutor l Admission Consultant l On-Demand Course creator
Location: India
GMAT: QUANT+DI EXPERT
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
WE:Education (Education)
Products:
Expert
Expert reply
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
Posts: 6,839
Kudos: 16,354
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
What is the number of sides of a regular polygon in which 1/3rd of the sum of exterior angle is equal to the each interior angle ?

(A) 3

(B) 4

(C) 5

(D) 6

(E) 8


Are You Up For the Challenge: 700 Level Questions

CONCEPT:
Exterior angle of a polygon = 360/n where n is the number of sides of a polygon
Interior angle of a polygon = 180- (360/n)
Sum of exteriorangles in any polygon = 360


i.e. Given, (1/3)*360 = 180- (360/n)

i.e. n = 6

Answer: Option D
User avatar
lacktutor
Joined: 25 Jul 2018
Last visit: 23 Oct 2023
Posts: 659
Own Kudos:
Given Kudos: 69
Posts: 659
Kudos: 1,396
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The sum of the interior angles - 180º(n-2)
The sum of the interior angles- 2π= 360º

\(\frac{180*(n-2)}{n} = (\frac{1}{3})*2π\)

\(\frac{(n-2)}{n}= \frac{2}{3}\)

\(3n -6= 2n\)
--> \(n=6 \)

The answer is D.
User avatar
exc4libur
Joined: 24 Nov 2016
Last visit: 22 Mar 2022
Posts: 1,684
Own Kudos:
Given Kudos: 607
Location: United States
Posts: 1,684
Kudos: 1,447
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
What is the number of sides of a regular polygon in which 1/3rd of the sum of exterior angle is equal to the each interior angle ?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 8

The sum of the exterior angles of any polygon is 360;
The sum of the interior angles of an n-sided polygon is 180(n-2);
1/3*360=120: 180(n-2)/n=120, n=6

Ans (D)
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 19 Nov 2025
Posts: 21,716
Own Kudos:
26,996
 [2]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,716
Kudos: 26,996
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
What is the number of sides of a regular polygon in which 1/3rd of the sum of exterior angle is equal to the each interior angle ?

(A) 3

(B) 4

(C) 5

(D) 6

(E) 8


Are You Up For the Challenge: 700 Level Questions

The sum of the measures of the exterior angles of any polygon is 360 degrees. The measure of each interior angle of an n-sided regular polygon is 180(n - 2)/n degrees. Therefore, we can create the equation:

180(n - 2)/n = ⅓(360)

(180n - 360)/n = 120

180n - 360 = 120n

60n = 360

n = 6

Answer: D
User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 19 Nov 2025
Posts: 5,794
Own Kudos:
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,794
Kudos: 5,510
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
What is the number of sides of a regular polygon in which 1/3rd of the sum of exterior angle is equal to the each interior angle ?

(A) 3

(B) 4

(C) 5

(D) 6

(E) 8


Are You Up For the Challenge: 700 Level Questions

Asked: What is the number of sides of a regular polygon in which 1/3rd of the sum of exterior angle is equal to the each interior angle ?

Sum of exterior angle = 2*180 = 360
1/3rd of the sum of exterior angle = 360/3 = 120

Let the number of sides of the polygon be n

Interior angle = 180(n-2)/n = 120
n-2/n = 120/180 = 2/3
n = 6

Number of sides = n = 6

IMO D
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,589
Own Kudos:
Posts: 38,589
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts