Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

$10,000 is deposited in a certain account that pays r [#permalink]

Show Tags

14 Jun 2008, 10:10

2

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

5% (low)

Question Stats:

76% (01:52) correct
24% (00:45) wrong based on 401 sessions

HideShow timer Statistics

$10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))^t. What amount will the deposit grow to in 3 years?

(1) D(1) = 11,000 (2) r=10

Below is a flawed version of the above correct question: 10. $10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))t What amount will the deposit grow to in 3 years?

10. $10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))t What amount will the deposit grow to in 3 years?

(1) D(t) = 11,000 (2) r=10

Can anybody explain the logic please? Thank you!

This is D indeed.

Rephrased, knowing that t=3, the equation is: D(t)=10,000(1+(r/100))3 - If you know either D(t) or r, you can solve this equation for all variables.
_________________

statement 1: D(t) = 11000, but t could be any thing, it could be 10 years or 2 years. insuff

statement 2: suff, because it gives the interest rate and you have the years in the stem, you can find out the total after 3 years.

D(t) means a function. Now, constant values (i.e., 11000) can't be equated with functions because as far as I can think, no one can come up with an equation with a variable that always produces the same value for all values of the variable. Hence, in this question, we must assume that D(t) gives 11000 for some value of t. With that thinking, D should be the correct answer.
_________________

statement 1: D(t) = 11000, but t could be any thing, it could be 10 years or 2 years. insuff

statement 2: suff, because it gives the interest rate and you have the years in the stem, you can find out the total after 3 years.

D(t) means a function. Now, constant values (i.e., 11000) can't be equated with functions because as far as I can think, no one can come up with an equation with a variable that always produces the same value for all values of the variable. Hence, in this question, we must assume that D(t) gives 11000 for some value of t. With that thinking, D should be the correct answer.

Guys \(t\) is already give, No? \(3\) years. So \(t\) should be \(3\), No? Hence D _________________

"Nowadays, people know the price of everything, and the value of nothing."Oscar Wilde

10. $10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))t What amount will the deposit grow to in 3 years?

(1) D(t) = 11,000 (2) r=10

Can anybody explain the logic please? Thank you!

Two things: Formula should be \(D(t)=10,000(1+\frac{r}{100})^t\) and statement (1) should read \(D(1)=11,000\) (since two statements in DS never contradict and give true information then r=10 must give 11,000 for t=1 as it does). So the question should read:

$10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))^t What amount will the deposit grow to in 3 years?

Question: \(D(3)=10,000(1+\frac{r}{100})^3=?\). Basically the only thing we need is the value of \(r\).

(1) D(1) = 11,000 --> \(D(1)=10,000(1+\frac{r}{100})^1=11,000\) --> we can solve for r. Sufficient.

(2) r=10 --> directly gives the value of r. Sufficient.

Re: $10,000 is deposited in a certain account that pays r [#permalink]

Show Tags

24 Feb 2012, 00:10

quantum wrote:

$10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))^t. What amount will the deposit grow to in 3 years?

(1) D(1) = 11,000 (2) r=10

Below is a flawed version of the above correct question: 10. $10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))t What amount will the deposit grow to in 3 years?

(1) D(t) = 11,000 (2) r=10

Bunuel

Hi

The answer is indeeded +1 D

Statement Break Down : You need to know R. t is already know at 3 years

Statement 1 : D(1) : 11,000

Thus you can easily find out 'R' by equating D(1) & the eqn of D(t)

Thus sufficient

Statement 2 : R know hence sufficient

Thus we can find R which is the
_________________

Giving +1 kudos is a better way of saying 'Thank You'.

Re: $10,000 is deposited in a certain account that pays r [#permalink]

Show Tags

24 Feb 2012, 00:30

Bunuel wrote:

quantum wrote:

10. $10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))t What amount will the deposit grow to in 3 years?

(1) D(t) = 11,000 (2) r=10

Can anybody explain the logic please? Thank you!

Two things: Formula should be \(D(t)=10,000(1+\frac{r}{100})^t\) and statement (1) should read \(D(1)=11,000\) (since two statements in DS never contradict and give true information then r=10 must give 11,000 for t=1 as it does). So the question should read:

$10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))^t What amount will the deposit grow to in 3 years?

Question: \(D(3)=10,000(1+\frac{r}{100})^3=?\). Basically the only thing we need is the value of \(r\).

(1) D(1) = 11,000 --> \(D(1)=10,000(1+\frac{r}{100})^1=11,000\) --> we can solve for r. Sufficient.

(2) r=10 --> directly gives the value of r. Sufficient.

Answer: D.

Hope it's clear.

Agreed. But taking it on the face value, Statement 1 can give an impression that, for any value of t, D(t) gives 11000 ,which I think is not correct. Personally I don;t accept this statement, because in DS category, I do following activities: 1. Is the statement is supported for all situations by the premises/facts given in the question stem. 2. Once the answer for the above is Yes, then I will think, does the statement support all situations of the question.

In this exercise, I get a 'No' to the first part from the question. Hence, the answer should be B.

But, as the statement 1, does not hold good on its face value, I just tried mapping it to the question stem for specific scenario and then got the answer D.

10. $10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))t What amount will the deposit grow to in 3 years?

(1) D(t) = 11,000 (2) r=10

Can anybody explain the logic please? Thank you!

Two things: Formula should be \(D(t)=10,000(1+\frac{r}{100})^t\) and statement (1) should read \(D(1)=11,000\) (since two statements in DS never contradict and give true information then r=10 must give 11,000 for t=1 as it does). So the question should read:

$10,000 is deposited in a certain account that pays r percent annual interest compounded annually, the amount D(t), in dollars, that the deposit will grow to in t years in given by D(t)=10,000(1+(r/100))^t What amount will the deposit grow to in 3 years?

Question: \(D(3)=10,000(1+\frac{r}{100})^3=?\). Basically the only thing we need is the value of \(r\).

(1) D(1) = 11,000 --> \(D(1)=10,000(1+\frac{r}{100})^1=11,000\) --> we can solve for r. Sufficient.

(2) r=10 --> directly gives the value of r. Sufficient.

Answer: D.

Hope it's clear.

Agreed. But taking it on the face value, Statement 1 can give an impression that, for any value of t, D(t) gives 11000 ,which I think is not correct. Personally I don;t accept this statement, because in DS category, I do following activities: 1. Is the statement is supported for all situations by the premises/facts given in the question stem. 2. Once the answer for the above is Yes, then I will think, does the statement support all situations of the question.

In this exercise, I get a 'No' to the first part from the question. Hence, the answer should be B.

But, as the statement 1, does not hold good on its face value, I just tried mapping it to the question stem for specific scenario and then got the answer D.

Isn't this correct approach?

If we take (1) as it was written: D(t) = 11,000 then it would mean that D(t) has the same value no matter the time period and annual interest, which makes no sense at all. Though technically it still would be sufficient as it would mean that for t=3 the answer is also 11,000.

Having said that I recommend not to spend time on flawed version of a question as you won't see such one on the real test.
_________________

Re: $10,000 is deposited in a certain account that pays r [#permalink]

Show Tags

25 Jun 2015, 19:21

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: $10,000 is deposited in a certain account that pays r [#permalink]

Show Tags

04 Jul 2016, 12:37

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...