Last visit was: 19 Nov 2025, 16:16 It is currently 19 Nov 2025, 16:16
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
bmwhype2
Joined: 21 Jan 2007
Last visit: 08 Mar 2010
Posts: 1,338
Own Kudos:
5,435
 [25]
Given Kudos: 4
Location: New York City
Posts: 1,338
Kudos: 5,435
 [25]
3
Kudos
Add Kudos
22
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
 [24]
15
Kudos
Add Kudos
9
Bookmarks
Bookmark this Post
User avatar
KillerSquirrel
Joined: 08 Jun 2005
Last visit: 28 Mar 2009
Posts: 520
Own Kudos:
634
 [7]
Posts: 520
Kudos: 634
 [7]
6
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
General Discussion
User avatar
sevenplus
Joined: 26 Sep 2007
Last visit: 05 May 2011
Posts: 32
Own Kudos:
44
 [2]
Given Kudos: 5
Posts: 32
Kudos: 44
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Probability of getting each color marble = (3C1*3C1*3C1)/9C3
= (3*3*3)/84
= 27/84 = 9/28
So answer is D
User avatar
GK_Gmat
Joined: 09 Aug 2006
Last visit: 28 Feb 2009
Posts: 348
Own Kudos:
1,061
 [1]
Posts: 348
Kudos: 1,061
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
KillerSquirrel
9/9*6/8*3/7 = 9/28

the answer is (D)

:)


KS, can you please explain how you get 3/7?

I'm assuming you did the following:
The 1st chosen can be any color and it doesn't really matter so let's say the first chosen is Blue.

The probability that the 2nd chosen is not blue = 1-2/8 = 6/8

Now what?? How do I proceed? Thanks!
User avatar
KillerSquirrel
Joined: 08 Jun 2005
Last visit: 28 Mar 2009
Posts: 520
Own Kudos:
634
 [2]
Posts: 520
Kudos: 634
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
GK_Gmat
KillerSquirrel
9/9*6/8*3/7 = 9/28

the answer is (D)

:)

KS, can you please explain how you get 3/7?

I'm assuming you did the following:
The 1st chosen can be any color and it doesn't really matter so let's say the first chosen is Blue.

The probability that the 2nd chosen is not blue = 1-2/8 = 6/8

Now what?? How do I proceed? Thanks!


You are right about the first marble , you can choose any marble out of nine = 9/9 = 1 (nine out of nine).

For the second marble you are also correct - since you removed one marble from the basket you now have eight left but you can't choose the color already been choosen so 6/8 (six out of eight - three for one color and three for the other color).

For the third marble the logic is the same - you can choose one of the three marbles from the color not already choosen and you have seven mables to choose from meaning 3/7 (three out seven).

All of this is true only when the marbles taken out are not returned to the basket - if they were the probability then was ?? - can you solve this ?

:)
User avatar
GMAT TIGER
Joined: 29 Aug 2007
Last visit: 17 Aug 2011
Posts: 1,013
Own Kudos:
1,783
 [1]
Given Kudos: 19
Posts: 1,013
Kudos: 1,783
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
bmwhype2
A basket contains 3 blue, 3 red and 3 yellow marbles. If 3 marbles are extracted from the basket at random, what is the probability that a marble of each color is among the extracted?

2/21
3/25
1/6
9/28
11/24


alternatively:

= (3c1 x 3c1 x 3c1)/9c3
= 9/28
User avatar
bmwhype2
Joined: 21 Jan 2007
Last visit: 08 Mar 2010
Posts: 1,338
Own Kudos:
Given Kudos: 4
Location: New York City
Posts: 1,338
Kudos: 5,435
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sevenplus
Probability of getting each color marble = (3C1*3C1*3C1)/9C3
= (3*3*3)/84
= 27/84 = 9/28
So answer is D


yep. most intuitive approach.

desired/total

OA is D
User avatar
jimmyjamesdonkey
Joined: 01 May 2007
Last visit: 27 Mar 2009
Posts: 484
Own Kudos:
1,539
 [2]
Posts: 484
Kudos: 1,539
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
For me it was easier to just write it out.

I need 3 different colors so, we'll say I wanted a red, blue, yellow.

So chance of picking a red = 3/9

On 2nd pick chance of picking a blue = 3/8

On 3rd pick chance of picking a yellow = 3/7.

Then I listed out the different 3 ball combos I could have.

BRY
BYR
RBY
RYB
YRB
YBR

So 6 different combos. So the prob of pick r,b,y is 3/9 * 3/8 * 3/7 = 3/56

Multiply that by 6 and you have 9/28 prob of picking three different colored balls.
avatar
srivas
Joined: 27 Oct 2008
Last visit: 28 Sep 2009
Posts: 95
Own Kudos:
Given Kudos: 3
Posts: 95
Kudos: 310
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A basket contains 3 blue, 3 red and 3 yellow marbles.
If 3 marbles are extracted from the basket at random, what is the probability that a marble of each color is among the extracted?

2/21
3/25
1/6
9/28
11/24

Soln:
= 3C1 * 3C1 * 3C1/9C3
= 27/(9 * 8 * 7/6)
= 27/84
= 9/28
User avatar
144144
Joined: 08 Nov 2010
Last visit: 26 May 2013
Posts: 193
Own Kudos:
544
 [1]
Given Kudos: 161
GPA: 3.9
WE 1: Business Development
Posts: 193
Kudos: 544
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hey guys,

I understand the solution, but i need someone to explain me why the following is not working:

total groups of 3 - 9C3

total options of 3 different color:
abc
acb
bac
bca
cab
cba

so - 6 options to get 3 different colors.

6/84 is not the answer.

please help me find the mistake. thanks.
User avatar
shahideh
Joined: 25 May 2011
Last visit: 11 Mar 2012
Posts: 58
Own Kudos:
156
 [3]
Given Kudos: 71
Posts: 58
Kudos: 156
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
We can choose 3 balls from 9 balls. Total possibilities: \(C^9_3\)
We should choose 1 ball from each color. Favorite possibilities: \(C^3_1*C^3_1*C^3_1\)

\(p=\frac{C^3_1*C^3_1*C^3_1}{C^9_3}=\frac{9}{28}\)
D
avatar
malikshilpa
Joined: 04 Jun 2012
Last visit: 09 Aug 2012
Posts: 2
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is ' picking of 3 marbles at random' same as 'picking 3 marbles one by on without replacement' ? Although looking at the solution these two scenarios appear to be similar. However, when 3 marbles are picked up together (in one shot) then should the problem not be treated differently. Please clarify .
avatar
TheBookie
Joined: 29 Mar 2014
Last visit: 01 Aug 2015
Posts: 9
Own Kudos:
Posts: 9
Kudos: 8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Just wanted to clarify here, as I feel like I'm looking at this wrong
n should be 3 (because this is the total set)
r should be 1 (this is the number of objects being extracted)

so shouldn't the combination formula be C 3 over 1? Instead of C 1 over 3?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,368
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
TheBookie
Just wanted to clarify here, as I feel like I'm looking at this wrong
n should be 3 (because this is the total set)
r should be 1 (this is the number of objects being extracted)

so shouldn't the combination formula be C 3 over 1? Instead of C 1 over 3?

\(C^1_3\), \(C^3_1\), 3C1, mean the same thing choosing 1 out of 3, just different ways to write. Can it be choosing 3 out of 1???
avatar
TheBookie
Joined: 29 Mar 2014
Last visit: 01 Aug 2015
Posts: 9
Own Kudos:
8
 [1]
Posts: 9
Kudos: 8
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
TheBookie
Just wanted to clarify here, as I feel like I'm looking at this wrong
n should be 3 (because this is the total set)
r should be 1 (this is the number of objects being extracted)

so shouldn't the combination formula be C 3 over 1? Instead of C 1 over 3?

\(C^1_3\), \(C^3_1\), 3C1, mean the same thing choosing 1 out of 3, just different ways to write. Can it be choosing 3 out of 1???

Agreed, but for the sake of consistency, I see the combination formula written as C n over r
https://www.mathwords.com/c/combination_formula.htm

Thanks
User avatar
russ9
Joined: 15 Aug 2013
Last visit: 20 Apr 2015
Posts: 174
Own Kudos:
Given Kudos: 23
Posts: 174
Kudos: 400
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
malikshilpa
Is ' picking of 3 marbles at random' same as 'picking 3 marbles one by on without replacement' ? Although looking at the solution these two scenarios appear to be similar. However, when 3 marbles are picked up together (in one shot) then should the problem not be treated differently. Please clarify .

Mathematically the probability of picking 3 marbles simultaneously, or picking them one at a time (without replacement) is the same.

A basket contains 3 blue, 3 red and 3 yellow marbles. If 3 marbles are extracted from the basket at random, what is the probability that a marble of each color is among the extracted?
A. 2/21
B. 3/25
C. 1/6
D. 9/28
E. 11/24

We need to find the probability of BRY (a marble of each color).

Probability approach:

\(P(BRY)=\frac{3}{9}*\frac{3}{8}*\frac{3}{7}*3!=\frac{9}{28}\), we are multiplying by 3! since BRY scenario can occur in several different ways: BRY, RYB, RBY (# of permutations of 3 distinct letters BRY is 3!).


Combination approach:

\(P(BRY)=\frac{C^1_3*C^1_3*C^1_3}{C^3_9}=\frac{9}{28}\).

Answer: D.

Hope it's clear.

Hi Bunuel,

I have a question with the methodology here -- I can follow the work you're doing but i'm having a hard time understanding why. Can you please clarify the reasoning?


a) In your statement below, can you please elaborate WHY we multiply by 3!? -- [\(P=\frac{3}{9}*\frac{3}{8}*\frac{3}{7}*3!=\frac{9}{28}\)

If I reference the GMAT club book, I don't see it referencing the multiplication by a factorial(Page 109 of the book).

b) What is the difference between the method you used vs. doing the following? (9/9)(6/8)(3/7)

c) lastly, regarding your combinatorial approach, isn't that technically a reverse approach(pg 109 of the book)? Sorry if i'm being trivial here but i'm having a hard time connecting the dots hence the trivial questions. How can you use the 1C3 approach because don't you have 9 to begin with? Sorry - i'm going nuts here.
avatar
salonipatil
Joined: 20 Feb 2016
Last visit: 11 May 2021
Posts: 6
Own Kudos:
Given Kudos: 31
Posts: 6
Kudos: 7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shahideh
We can choose 3 balls from 9 balls. Total possibilities: \(C^9_3\)
We should choose 1 ball from each color. Favorite possibilities: \(C^3_1*C^3_1*C^3_1\)

\(p=\frac{C^3_1*C^3_1*C^3_1}{C^9_3}=\frac{9}{28}\)
D


I'm trying to understand the basics, please excuse me if you find the question too silly:
Why don't we multiple by 3! in combinatorics method?
So first it's choosing i.e. 3C1 * 3C1* 3C1
Then why aren't the chosen balls arranged amongst themselves in 3! ways?
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,706
 [1]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,706
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
salonipatil
shahideh
We can choose 3 balls from 9 balls. Total possibilities: \(C^9_3\)
We should choose 1 ball from each color. Favorite possibilities: \(C^3_1*C^3_1*C^3_1\)

\(p=\frac{C^3_1*C^3_1*C^3_1}{C^9_3}=\frac{9}{28}\)
D


I'm trying to understand the basics, please excuse me if you find the question too silly:
Why don't we multiple by 3! in combinatorics method?
So first it's choosing i.e. 3C1 * 3C1* 3C1
Then why aren't the chosen balls arranged amongst themselves in 3! ways?

hi,
We are not doing so, because it will not effect the answer..
if you consider ORDER important, even the TOTAL ways will be multiplied by 3!..
ans = \(p=\frac{C^3_1*C^3_1*C^3_1*3!}{C^9_3*3!}=\frac{9}{28}\)
User avatar
hero_with_1000_faces
Joined: 02 Jan 2016
Last visit: 17 Mar 2025
Posts: 358
Own Kudos:
Given Kudos: 314
Status:Studying 4Gmat
Location: India
Concentration: Strategy, Entrepreneurship
GMAT 1: 590 Q37 V33
GPA: 4
WE:Law (Manufacturing)
Products:
GMAT 1: 590 Q37 V33
Posts: 358
Kudos: 146
Kudos
Add Kudos
Bookmarks
Bookmark this Post
russ9
Bunuel
malikshilpa
Is ' picking of 3 marbles at random' same as 'picking 3 marbles one by on without replacement' ? Although looking at the solution these two scenarios appear to be similar. However, when 3 marbles are picked up together (in one shot) then should the problem not be treated differently. Please clarify .

Mathematically the probability of picking 3 marbles simultaneously, or picking them one at a time (without replacement) is the same.

A basket contains 3 blue, 3 red and 3 yellow marbles. If 3 marbles are extracted from the basket at random, what is the probability that a marble of each color is among the extracted?
A. 2/21
B. 3/25
C. 1/6
D. 9/28
E. 11/24

We need to find the probability of BRY (a marble of each color).

Probability approach:

\(P(BRY)=\frac{3}{9}*\frac{3}{8}*\frac{3}{7}*3!=\frac{9}{28}\), we are multiplying by 3! since BRY scenario can occur in several different ways: BRY, RYB, RBY (# of permutations of 3 distinct letters BRY is 3!).


Combination approach:

\(P(BRY)=\frac{C^1_3*C^1_3*C^1_3}{C^3_9}=\frac{9}{28}\).

Answer: D.

Hope it's clear.

Hi Bunuel,

I have a question with the methodology here -- I can follow the work you're doing but i'm having a hard time understanding why. Can you please clarify the reasoning?


a) In your statement below, can you please elaborate WHY we multiply by 3!? -- [\(P=\frac{3}{9}*\frac{3}{8}*\frac{3}{7}*3!=\frac{9}{28}\)

If I reference the GMAT club book, I don't see it referencing the multiplication by a factorial(Page 109 of the book).

b) What is the difference between the method you used vs. doing the following? (9/9)(6/8)(3/7)

c) lastly, regarding your combinatorial approach, isn't that technically a reverse approach(pg 109 of the book)? Sorry if i'm being trivial here but i'm having a hard time connecting the dots hence the trivial questions. How can you use the 1C3 approach because don't you have 9 to begin with? Sorry - i'm going nuts here.




Hey GMATBusters

can you please help me the query stated above


a) In your statement below, can you please elaborate WHY we multiply by 3!? -- [\(P=\frac{3}{9}*\frac{3}{8}*\frac{3}{7}*3!=\frac{9}{28}\)


b) What is the difference between the method you used vs. doing the following? (9/9)(6/8)(3/7)

c) lastly, regarding your combinatorial approach, isn't that technically a reverse approach(pg 109 of the book)?
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts