Last visit was: 10 Jul 2025, 04:23 It is currently 10 Jul 2025, 04:23
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
galiya
Joined: 16 Jan 2011
Last visit: 08 Jan 2018
Posts: 72
Own Kudos:
815
 [18]
Given Kudos: 15
Posts: 72
Kudos: 815
 [18]
1
Kudos
Add Kudos
17
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 Jul 2025
Posts: 102,612
Own Kudos:
740,019
 [8]
Given Kudos: 98,069
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 740,019
 [8]
5
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
General Discussion
User avatar
galiya
Joined: 16 Jan 2011
Last visit: 08 Jan 2018
Posts: 72
Own Kudos:
815
 [1]
Given Kudos: 15
Posts: 72
Kudos: 815
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
raingary
Joined: 22 Jan 2012
Last visit: 07 Oct 2012
Posts: 25
Own Kudos:
Posts: 25
Kudos: 79
Kudos
Add Kudos
Bookmarks
Bookmark this Post
1M,2NM + 2M,1NM


3C1* 8C2 + 3C2 *8C1
3*28+3*8=108
avatar
casper123
Joined: 07 May 2012
Last visit: 07 May 2012
Posts: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
hi guys, first post :-D
i have a problem in understanding this question and why my logic is wrong, this is how i try to solve the problem:

i use the formula n!/(n-k)!*k!

so first n=3 and k=1 because we have 3 managers to choose from and can choose one
3!/(2!*1!)
second n=3 and k=2 because we have 3 managers to choose from and can choose two
3!/(2!*1!)
third n=8 and k=1 because we have 8 non-managers to choose from and can choose one
8!/(7!*1!)
fourth n=8 and k=2 because we have 8 non-managers to choose from and can choose two
8!/(6!*2!)
then i multiply all the parts= 3*3*8*28=2016
can someone please help me
thank you
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 Jul 2025
Posts: 102,612
Own Kudos:
Given Kudos: 98,069
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 740,019
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on Combinations: math-combinatorics-87345.html

DS questions on Combinations: search.php?search_id=tag&tag_id=31
PS questions on Combinations: search.php?search_id=tag&tag_id=52

Tough and tricky questions on Combinations: hardest-area-questions-probability-and-combinations-101361.html
User avatar
Narenn
User avatar
Major Poster
Joined: 22 Feb 2012
Last visit: 09 Jul 2025
Posts: 9,065
Own Kudos:
10,861
 [2]
Given Kudos: 4,635
Affiliations: GMAT Club
Test: Test
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 9,065
Kudos: 10,861
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Selection of a Manager from 3 Managers AND
Selection of 2 Non-Managers from 8 Non-Managers OR
Selection of 2 Managers from 3 Managers AND
Selection of a Non-Manager from 8 Non-Managers

AND = Multiplication, OR = Addition

3C1 * 8C2 + 3C2 * 8C1 = 3 * 28 + 3 * 8 = 24 + 84 = 108
avatar
anoopv25
Joined: 07 Jun 2013
Last visit: 28 Jan 2018
Posts: 3
Own Kudos:
Given Kudos: 5
Location: India
Concentration: Entrepreneurship, Strategy
GMAT 1: 640 Q48 V31
GMAT 2: 710 Q35 V50
GPA: 3.2
WE:Business Development (Consulting)
GMAT 2: 710 Q35 V50
Posts: 3
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
first place can be filled with a manager in 3 ways
second place with a non manager in 8 ways
last place can be filled with either of them... i.e, 9 ways
so 3*8*9=216
where am i going wrong???
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 Jul 2025
Posts: 102,612
Own Kudos:
Given Kudos: 98,069
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 740,019
Kudos
Add Kudos
Bookmarks
Bookmark this Post
anoopv25
first place can be filled with a manager in 3 ways
second place with a non manager in 8 ways
last place can be filled with either of them... i.e, 9 ways
so 3*8*9=216
where am i going wrong???

The following post might help: a-five-member-committee-is-to-be-formed-from-a-group-of-five-55410.html#p1248236
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 Jul 2025
Posts: 102,612
Own Kudos:
740,019
 [2]
Given Kudos: 98,069
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 740,019
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
anoopv25
first place can be filled with a manager in 3 ways
second place with a non manager in 8 ways
last place can be filled with either of them... i.e, 9 ways
so 3*8*9=216
where am i going wrong???

The following post might help: a-five-member-committee-is-to-be-formed-from-a-group-of-five-55410.html#p1248236

Check this too: a-committee-of-6-is-chosen-from-8-men-and-5-women-so-as-to-104859.html#p1046885
User avatar
reto
User avatar
Retired Moderator
Joined: 29 Apr 2015
Last visit: 24 Aug 2018
Posts: 716
Own Kudos:
Given Kudos: 302
Location: Switzerland
Concentration: Economics, Finance
Schools: LBS MIF '19
WE:Asset Management (Finance: Investment Banking)
Schools: LBS MIF '19
Posts: 716
Kudos: 4,276
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Galiya
A certain company consists of 3 managers and 8 non-managers. How many different teams of 3 employees can be formed in which at least one member of the team is a manager and at least one member of the team is not a manager? (Two groups are considered different if at least one group member is different)

A. 84
B. 108
C. 135
D. 270
E. 990

I solved this task in this way:

(11!/3!*8!)-(3!+8!/3!5!)=103,
where (11!/3!*8!) is the total number of combinations and (3!+8!/3!5!) - undesirable output, e.g. only managers or non managers are in the teams
Could please someone to help me to point out, where exactly my logic comes wrong?

Direct approach:

Since there should be at least one manager and at least one non-manager among team of 3, then there should be either 1 manager and 2 non-managers OR 2 managers and 1 non-manager: \(C^1_3*C^2_8+C^2_3*C^1_8=84+24=108\).

Reverse approach:

Total # of teams of 3 possible is \(C^3_{11}=165\);
# of teams with only managers or only non-managers is: \(C^3_3+C^3_8=1+56=57\);

# of teams of 3 with at least one manager or at least one non-manager is: 165-57=108.

Answer: B.

Hope it's clear.

Dear Bunuel

I do not understand the formulas here:

C13∗C28+C23∗C18=84+24=108. > How do you calculate 84 and 24 ... it must be with factorials but I do not get the way you write it. thank you
User avatar
yenh
Joined: 16 Mar 2014
Last visit: 19 Sep 2020
Posts: 15
Own Kudos:
57
 [1]
Given Kudos: 123
GMAT Date: 08-18-2015
Products:
Posts: 15
Kudos: 57
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Guys,
Here is my answer:
AT LEAST 1 manager and AT LEAST 1 non-manager. Don't be trapped by AT LEAST.
3 members with at least 1 manager that mean there can be ONE or TWO (cannot be three because there is AT LEAST 1 non-manager). Altogether, we have two cases:
(1) 1M + 2N = choose 1 of 3 + choose 2 of 8 = 3 x 8!/(2! x 6!) = 84
(2) 2M + 1N = choose 2 of 3 + choose 1 of 8 = 3!/(2! x 1!) x 8 = 24
So (1) + (2) = 108 -> B.
Have fun with Maths!
User avatar
PrepTap
Joined: 22 Apr 2015
Last visit: 13 Sep 2017
Posts: 60
Own Kudos:
469
 [1]
Given Kudos: 6
Posts: 60
Kudos: 469
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
reto
Bunuel
Galiya
A certain company consists of 3 managers and 8 non-managers. How many different teams of 3 employees can be formed in which at least one member of the team is a manager and at least one member of the team is not a manager? (Two groups are considered different if at least one group member is different)

A. 84
B. 108
C. 135
D. 270
E. 990

I solved this task in this way:

(11!/3!*8!)-(3!+8!/3!5!)=103,
where (11!/3!*8!) is the total number of combinations and (3!+8!/3!5!) - undesirable output, e.g. only managers or non managers are in the teams
Could please someone to help me to point out, where exactly my logic comes wrong?

Direct approach:

Since there should be at least one manager and at least one non-manager among team of 3, then there should be either 1 manager and 2 non-managers OR 2 managers and 1 non-manager: \(C^1_3*C^2_8+C^2_3*C^1_8=84+24=108\).

Reverse approach:

Total # of teams of 3 possible is \(C^3_{11}=165\);
# of teams with only managers or only non-managers is: \(C^3_3+C^3_8=1+56=57\);

# of teams of 3 with at least one manager or at least one non-manager is: 165-57=108.

Answer: B.

Hope it's clear.

Dear Bunuel

I do not understand the formulas here:

C13∗C28+C23∗C18=84+24=108. > How do you calculate 84 and 24 ... it must be with factorials but I do not get the way you write it. thank you

Hi reto

C13 is just another way of writing 3C1.

So the expression here can be converted to

3C1*8C2 + 3C2*8C1
= 3*(8*7/2) + 3*8
= 84 + 24
=108
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,373
Own Kudos:
Posts: 37,373
Kudos: 1,010
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
102612 posts
PS Forum Moderator
684 posts