GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 13 Dec 2018, 19:23

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • GMATbuster's Weekly GMAT Quant Quiz, Tomorrow, Saturday at 9 AM PST

     December 14, 2018

     December 14, 2018

     09:00 AM PST

     10:00 AM PST

    10 Questions will be posted on the forum and we will post a reply in this Topic with a link to each question. There are prizes for the winners.
  • The winning strategy for 700+ on the GMAT

     December 13, 2018

     December 13, 2018

     08:00 AM PST

     09:00 AM PST

    What people who reach the high 700's do differently? We're going to share insights, tips and strategies from data we collected on over 50,000 students who used examPAL.

A cylinder has a base with a circumference of 20pi meters

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 17 Oct 2010
Posts: 75
A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post Updated on: 07 May 2012, 04:06
5
23
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

72% (02:39) correct 28% (02:42) wrong based on 419 sessions

HideShow timer Statistics

A cylinder has a base with a circumference of 20pi meters and an equilateral triangle inscribed on the interior side of the base. A marker is dropped into the tank with an equal probability of landing on any point on the base. If the probability of the marker landing inside the triangle is (Sqrt 3)/4 , what is the length of a side of the triangle?

A. 3(sqrt 2pi)
B. 3(sqrt 3pi)
C. 10*sqrt (pi)
D. 10(sqrt 3pi)
E. 20 pi

Originally posted by Joy111 on 07 May 2012, 02:12.
Last edited by Joy111 on 07 May 2012, 04:06, edited 1 time in total.
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51185
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 07 May 2012, 03:38
6
2
Joy111 wrote:
A cylinder has a base with a circumference of 20pi meters and an equilateral triangle inscribed on the interior side of the base. A marker is dropped into the tank with an equal probability of landing on any point on the base. If the probability of the marker landing inside the triangle is (Sqrt 3)/4 , what is the length of a side of the triangle?

A. 3(sqrt 2pi)
B. 3(sqrt 3pi)
C. 10 pi
D. 10(sqrt 3pi)
E. 20 pi


Since the probability of the marker landing on the portion of the base inside the triangle is \(\frac{\sqrt{3}}{4}\) then the portion of the base (circle) inside the triangle must be \(\frac{\sqrt{3}}{4}\) of the area of the base.

Next: \(circumference=20\pi=2\pi{r}\) --> \(r=10\) --> \(area_{base}=\pi{r^2}=100\pi\);

The area of the equilateral triangle is \(\frac{\sqrt{3}}{4}\) of the base: \(area_{equilateral}=\frac{\sqrt{3}}{4}*100\pi\) --> also the ares of the equilateral triangle is \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}\), where \(a\) is the length of a side --> \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{4}*100\pi\) --> \(a=10{\sqrt\pi}\).

Answer: C.

Similar question to practice: a-cylindrical-tank-has-a-base-with-a-circumference-of-105453.html

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
SVP
SVP
User avatar
G
Status: Top MBA Admissions Consultant
Joined: 24 Jul 2011
Posts: 1520
GMAT 1: 780 Q51 V48
GRE 1: Q800 V740
Re: Geometry, probablity  [#permalink]

Show Tags

New post 07 May 2012, 02:39
4
Prob of marker landing in the triangle = area of triangle / area of base = sqrt(3)/4

Circumference of base = 20pi meters
=> Radius of base = 10 meters
=> Area of base = 100pi sq m

Therefore area of the triangle = 100pi * sqrt(3)/4

As the area of an equilateral triangle is sqrt(3)*(side^2)/4,
any side of the triangle = 10*sqrt(pi)

This doesn't seem to be any of the answer choices.
_________________

GyanOne | Top MBA Rankings and MBA Admissions Blog

Top MBA Admissions Consulting | Top MiM Admissions Consulting

Premium MBA Essay Review|Best MBA Interview Preparation|Exclusive GMAT coaching

Get a FREE Detailed MBA Profile Evaluation | Call us now +91 98998 31738

Manager
Manager
avatar
Joined: 17 Oct 2010
Posts: 75
Re: Geometry, probablity  [#permalink]

Show Tags

New post 07 May 2012, 04:05
2
GyanOne wrote:
Prob of marker landing in the triangle = area of triangle / area of base = sqrt(3)/4

Circumference of base = 20pi meters
=> Radius of base = 10 meters
=> Area of base = 100pi sq m

Therefore area of the triangle = 100pi * sqrt(3)/4

As the area of an equilateral triangle is sqrt(3)*(side^2)/4,
any side of the triangle = 10*sqrt(pi)

This doesn't seem to be any of the answer choices.


sorry missed the sqrt in option C

It has now been edited , My bad :)

A. 3(sqrt 2pi)
B. 3(sqrt 3pi)
C. 10 sqrt (pi)
D. 10(sqrt 3pi)
E. 20 pi
Intern
Intern
avatar
Joined: 07 Feb 2011
Posts: 7
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 21 May 2012, 20:45
3
Bunuel wrote:
Joy111 wrote:
A cylinder has a base with a circumference of 20pi meters and an equilateral triangle inscribed on the interior side of the base. A marker is dropped into the tank with an equal probability of landing on any point on the base. If the probability of the marker landing inside the triangle is (Sqrt 3)/4 , what is the length of a side of the triangle?

A. 3(sqrt 2pi)
B. 3(sqrt 3pi)
C. 10 pi
D. 10(sqrt 3pi)
E. 20 pi


Since the probability of the marker landing on the portion of the base inside the triangle is \(\frac{\sqrt{3}}{4}\) then the portion of the base (circle) inside the triangle must be \(\frac{\sqrt{3}}{4}\) of the area of the base.

Next: \(circumference=20\pi=2\pi{r}\) --> \(r=10\) --> \(area_{base}=\pi{r^2}=100\pi\);

The area of the equilateral triangle is \(\frac{\sqrt{3}}{4}\) of the base: \(area_{equilateral}=\frac{\sqrt{3}}{4}*100\pi\) --> also the ares of the equilateral triangle is \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}\), where \(a\) is the length of a side --> \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{4}*100\pi\) --> \(a=10{\sqrt\pi}\).

Answer: C.

Similar question to practice: a-cylindrical-tank-has-a-base-with-a-circumference-of-105453.html

Hope it helps.


Hello All,

See my solution below and please tell me where I am going wrong:
Radius of base = 10 (as derived by you)
Now, if we draw the equilateral triangle inscribed in a circle (as shown in my attachment which is not to scale), then:
OA = radius = 10
and O is the centroid
Centroid divides a median in the ratio 2:1. Hence, OD = OA / 2 = 5

Now, AD is the height of the triangle and in equilateral triangle,
[math]height = a * sqrt (3) /2
where a = side of triangle

Hence, 15 = a * sqrt (3) /2
Hence a = 10 * sqrt (3)

Where am I going wrong?
Attachments

Circle.jpg
Circle.jpg [ 16.8 KiB | Viewed 7491 times ]

Intern
Intern
avatar
Joined: 18 Jun 2012
Posts: 32
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 18 Jul 2012, 04:44
In this question , Triangle is inscribed inside circle so if I am not wrong, centre of the circle will be the circumcentre. As per Maths book of GMAT club relationship between Equilateral triangle and Circcumradius is
R = a/3^1/2 . We know R = 10 , so why putting the values in this formula getting the right answer ?
Intern
Intern
avatar
Joined: 03 Oct 2010
Posts: 4
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 04 Sep 2012, 04:48
In this question , Triangle is inscribed inside circle so if I am not wrong, centre of the circle will be the circumcentre. As per Maths book of GMAT club relationship between Equilateral triangle and Circcumradius is
R = a/3^1/2 . We know R = 10 , so why putting the values in this formula NOT getting the right answer ?
Manager
Manager
avatar
Joined: 12 Feb 2012
Posts: 125
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 09 Sep 2012, 16:01
Bunuel wrote:
Joy111 wrote:
A cylinder has a base with a circumference of 20pi meters and an equilateral triangle inscribed on the interior side of the base. A marker is dropped into the tank with an equal probability of landing on any point on the base. If the probability of the marker landing inside the triangle is (Sqrt 3)/4 , what is the length of a side of the triangle?

A. 3(sqrt 2pi)
B. 3(sqrt 3pi)
C. 10 pi
D. 10(sqrt 3pi)
E. 20 pi


Since the probability of the marker landing on the portion of the base inside the triangle is \(\frac{\sqrt{3}}{4}\) then the portion of the base (circle) inside the triangle must be \(\frac{\sqrt{3}}{4}\) of the area of the base.

Next: \(circumference=20\pi=2\pi{r}\) --> \(r=10\) --> \(area_{base}=\pi{r^2}=100\pi\);

The area of the equilateral triangle is \(\frac{\sqrt{3}}{4}\) of the base: \(area_{equilateral}=\frac{\sqrt{3}}{4}*100\pi\) --> also the ares of the equilateral triangle is \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}\), where \(a\) is the length of a side --> \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{4}*100\pi\) --> \(a=10{\sqrt\pi}\).

Answer: C.

Similar question to practice: a-cylindrical-tank-has-a-base-with-a-circumference-of-105453.html

Hope it helps.


Hey Bunuel quick question,

If the radius of a circle that inscribed an equaliteral is \(r=S\sqrt{3}/3\), where r is the radius and S is the side of the equilateral, should int the answer be \(30/\sqrt{3}=S\)?
Intern
Intern
avatar
Joined: 12 Aug 2012
Posts: 14
Location: United States
Concentration: Strategy, General Management
GMAT 1: 750 Q50 V41
WE: Project Management (Manufacturing)
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 25 Mar 2013, 10:21
Could anyone pl clarify my doubt??

For an equilateral triangle circumscribed in a circle, side = R * root 3 where R is the circumradius.

In this problem, R = 10, So side of the triangle should be 10 * root 3..

Pl point where I am going wrong.
Intern
Intern
User avatar
Joined: 08 Feb 2011
Posts: 11
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 25 Mar 2013, 17:21
Quote:
Hey Bunuel quick question,

If the radius of a circle that inscribed an equaliteral is \(r=S\sqrt{3}/3\), where r is the radius and S is the side of the equilateral, should int the answer be \(30/\sqrt{3}=S\)?


I did the same thing as Alphabeta1234 and Friend29. Can someone explain why this is incorrect?
\(S=\frac{30}{\sqrt{3}}\)
\(S=10\sqrt{3}\).

Thanks
Intern
Intern
avatar
Joined: 18 Jul 2013
Posts: 35
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 13 Oct 2014, 17:15
1
C= 20pi =2pi*10
area of circle= pir^2 = pi10^2=100pi
Now as question mentions that probability of dropping a marker anywhere on the base is same and in particular in the equilateral triangle is sqrt3/4. So, equilateral triangle's area is sqrt3/4 of total area of circle (100pi) = sqrt3/4 *100pi( for e.g we do 20% of 100).
Now area of equilateral triangle can also be represented = as per its formula = a^2*sqrt3/4
So now when will be equating both the equations
a^2*sqrt3/4 =sqrt3/4 *100pi
a^2 = 100 pi
a= sqrt 10pi
Current Student
User avatar
Joined: 06 Mar 2014
Posts: 243
Location: India
GMAT Date: 04-30-2015
Reviews Badge
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 30 Oct 2014, 02:19
Bunuel wrote:
Joy111 wrote:
A cylinder has a base with a circumference of 20pi meters and an equilateral triangle inscribed on the interior side of the base. A marker is dropped into the tank with an equal probability of landing on any point on the base. If the probability of the marker landing inside the triangle is (Sqrt 3)/4 , what is the length of a side of the triangle?

A. 3(sqrt 2pi)
B. 3(sqrt 3pi)
C. 10 pi
D. 10(sqrt 3pi)
E. 20 pi


Since the probability of the marker landing on the portion of the base inside the triangle is \(\frac{\sqrt{3}}{4}\) then the portion of the base (circle) inside the triangle must be \(\frac{\sqrt{3}}{4}\) of the area of the base.

Next: \(circumference=20\pi=2\pi{r}\) --> \(r=10\) --> \(area_{base}=\pi{r^2}=100\pi\);

The area of the equilateral triangle is \(\frac{\sqrt{3}}{4}\) of the base: \(area_{equilateral}=\frac{\sqrt{3}}{4}*100\pi\)--> also the ares of the equilateral triangle is \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}\), where \(a\) is the length of a side --> \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{4}*100\pi\) --> \(a=10{\sqrt\pi}\).

Answer: C.

Similar question to practice: a-cylindrical-tank-has-a-base-with-a-circumference-of-105453.html

Hope it helps.



I cannot seem to understand the highlighted part.

How do we actually relate the given probability to the area of the base?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51185
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 31 Oct 2014, 05:48
earnit wrote:
Bunuel wrote:
Joy111 wrote:
A cylinder has a base with a circumference of 20pi meters and an equilateral triangle inscribed on the interior side of the base. A marker is dropped into the tank with an equal probability of landing on any point on the base. If the probability of the marker landing inside the triangle is (Sqrt 3)/4 , what is the length of a side of the triangle?

A. 3(sqrt 2pi)
B. 3(sqrt 3pi)
C. 10 pi
D. 10(sqrt 3pi)
E. 20 pi


Since the probability of the marker landing on the portion of the base inside the triangle is \(\frac{\sqrt{3}}{4}\) then the portion of the base (circle) inside the triangle must be \(\frac{\sqrt{3}}{4}\) of the area of the base.

Next: \(circumference=20\pi=2\pi{r}\) --> \(r=10\) --> \(area_{base}=\pi{r^2}=100\pi\);

The area of the equilateral triangle is \(\frac{\sqrt{3}}{4}\) of the base: \(area_{equilateral}=\frac{\sqrt{3}}{4}*100\pi\)--> also the ares of the equilateral triangle is \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}\), where \(a\) is the length of a side --> \(area_{equilateral}=a^2*\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{4}*100\pi\) --> \(a=10{\sqrt\pi}\).

Answer: C.

Similar question to practice: a-cylindrical-tank-has-a-base-with-a-circumference-of-105453.html

Hope it helps.



I cannot seem to understand the highlighted part.

How do we actually relate the given probability to the area of the base?


\(P = \frac{(favorable)}{(total)} =\frac{(area \ of \ triangle)}{(area \ of \ circle)} = \frac{\sqrt{3}}{4}\) --> \((area \ of \ triangle)=(area \ of \ circle)*\frac{\sqrt{3}}{4}\).
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
User avatar
G
Joined: 29 Dec 2017
Posts: 384
Location: United States
Concentration: Marketing, Technology
GMAT 1: 630 Q44 V33
GMAT 2: 690 Q47 V37
GMAT 3: 710 Q50 V37
GPA: 3.25
WE: Marketing (Telecommunications)
Re: A cylinder has a base with a circumference of 20pi meters  [#permalink]

Show Tags

New post 21 Aug 2018, 15:50
Why do we need the extra information about probability if finding the radius is enough?
GMAT Club Bot
Re: A cylinder has a base with a circumference of 20pi meters &nbs [#permalink] 21 Aug 2018, 15:50
Display posts from previous: Sort by

A cylinder has a base with a circumference of 20pi meters

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.