Last visit was: 19 Nov 2025, 16:25 It is currently 19 Nov 2025, 16:25
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
egmat
User avatar
e-GMAT Representative
Joined: 02 Nov 2011
Last visit: 19 Nov 2025
Posts: 5,108
Own Kudos:
32,887
 [14]
Given Kudos: 700
GMAT Date: 08-19-2020
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 5,108
Kudos: 32,887
 [14]
2
Kudos
Add Kudos
12
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
PrashantPonde
Joined: 27 Jun 2012
Last visit: 29 Jan 2025
Posts: 321
Own Kudos:
2,738
 [8]
Given Kudos: 185
Concentration: Strategy, Finance
Posts: 321
Kudos: 2,738
 [8]
7
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
General Discussion
User avatar
thangvietname
Joined: 09 Jun 2010
Last visit: 28 Jun 2017
Posts: 522
Own Kudos:
Given Kudos: 916
Posts: 522
Kudos: 561
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
egmat
User avatar
e-GMAT Representative
Joined: 02 Nov 2011
Last visit: 19 Nov 2025
Posts: 5,108
Own Kudos:
32,887
 [3]
Given Kudos: 700
GMAT Date: 08-19-2020
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 5,108
Kudos: 32,887
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
thangvietnam
how to pick the number ? picking number is time consuming.

any tip, trick here,
Hi,

When we look at \(f(x,y)=3x^2-2xy+y^2+4\) and then at the options, we find that plugging values is the best way to approach this question.
There are 3 things that should be keptp in mind while picking option values.

1.Pick integers first. They are easy to work on.
There are 3 values in the option list, which are integers.

2.Pick ‘0’ first. This will eliminate one variable completely for compuation.

3.What to choose first; x or y? One should always observe right hand side of the function. If number of terms of x is more than the number of terms of y, then plug in the option value in x first, and vice versa.


We choose the values for x in the order of 0, 1, and -1 to plug in.

Now, we plug in the value of f(x, y) =8, & x=0 in the equation, and we get,

\(8=3.0^2-2.0.y+y^2+4\)
\(8=y^2+4\)
\(4=y^2\)
y= ±2

This means for x=0, y is either 2 or -2. There is no such option available for values: 2 or-2 , hence these pair of values cannot be correct.

Now, we should try x=1. You may follow PraPon’s solution for x=1. He has done it correctly.

Hope it helps!

-Shalabh
User avatar
crazypriya
Joined: 19 May 2012
Last visit: 26 Dec 2013
Posts: 16
Own Kudos:
Location: India
Concentration: International Business, Healthcare
GMAT Date: 03-03-2014
WE:Information Technology (Computer Software)
Posts: 16
Kudos: 39
Kudos
Add Kudos
Bookmarks
Bookmark this Post
x=1,
y=1-root(2)
User avatar
ardatt1155
Joined: 11 May 2013
Last visit: 19 Dec 2013
Posts: 1
Own Kudos:
Posts: 1
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
\(f(x,y) = 3x^2 - 2xy + y^2 + 4 = 2x^2 + (x-y)^2 + 4\)
So, \(f(x,y) = 8\) if and only if \(2x^2 + (x-y)^2 = 4\) or \(x^2 + ((x-y)/sqrt 2)^2 = 2\)

Now that you have formulated the expression this way, it is very easy to see that x=1 and y=1-sqrt(2) is the solution.

This is much faster than plugging in values.
User avatar
amitpassionate
Joined: 22 Jun 2017
Last visit: 08 Sep 2018
Posts: 12
Given Kudos: 6
Location: India
GMAT 1: 670 Q48 V34
GPA: 4
GMAT 1: 670 Q48 V34
Posts: 12
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Here is another trick as number picking can be a longer process !
Solve and separate out for quadratic
we know we have to prove 3x^2-2xy+y^2=4
i will simplify this as 2x^2+(x-y)^2=4 ...... from here choosing x =1 and y = 1-root2 becomes easy
User avatar
Oppenheimer1945
Joined: 16 Jul 2019
Last visit: 19 Nov 2025
Posts: 784
Own Kudos:
Given Kudos: 223
Location: India
GMAT Focus 1: 645 Q90 V76 DI80
GPA: 7.81
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Lets put an easy no, x=1 and solve the quadratic:
3-2y+y^2=4
y^2-2y-1=0
(y-1)^2=2
y=-rt(2)+1
User avatar
agrasan
Joined: 18 Jan 2024
Last visit: 19 Nov 2025
Posts: 534
Own Kudos:
Given Kudos: 5,193
Location: India
Products:
Posts: 534
Kudos: 130
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Simply write the equation f(x,y)=3x^2−2xy+y^2+4 as:

f(x , y) = 2*x^2 + x^2 - 2xy + y^2 + 4

f(x, y) = (x-y)^2 + 2*x^2 + 4

Now, we can try a simple case for (x-y)^2 = 2, 2*x^2 = 2 to give us total 4

We can clearly see that x = 1 and y = 1−2^0.5 would work for us

Adding 4 on top of these two, we will get 8
The learning from this question is to simplify the terms as much as possible to save time on trying options through trial and error
Moderators:
Math Expert
105390 posts
496 posts