Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If 'x' is maximum at x = 1, then \(\frac{d}{dx}f(x) = 0\) at x = 1

\(\frac{d}{dx}f(x) = 2ax + b = 0\) Therefore, putting value of x =1 we get \(b = -2a\)

Now going back to \(f(1) = 3\), we get \(a + b + 1 = 3\) --> \(a - 2a + 1 = 3\)

Thus, \(a = -2\) and \(b = 4\)

So our quadratic function is : \(f(x) = -2x^2 + 4x + 1\)

Thus \(f(10) = -159\)

Answer : A

Ps. I doubt this is a GMAT problem. Please mention the source.
_________________

Click below to check out some great tips and tricks to help you deal with problems on Remainders! http://gmatclub.com/forum/compilation-of-tips-and-tricks-to-deal-with-remainders-86714.html#p651942

Word Problems Made Easy! 1) Translating the English to Math : http://gmatclub.com/forum/word-problems-made-easy-87346.html 2) 'Work' Problems Made Easy : http://gmatclub.com/forum/work-word-problems-made-easy-87357.html 3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distance-speed-time-word-problems-made-easy-87481.html

A quadratic function f(x) attains a max of 3 at x =1, the value of the function at x =0 is 1.the value of f(x) at x =10 is

a)-159, b)-110, c)-180, d)-105, e)-119

Pls explain

Not sure this would be on the GMAT, seems you should use calculus for this.

ax^2+bx+c=0

f(1)=3=a+b+c f(0)=1=c

f'(x)= 2xa+b.

since the max is 3, f'(1)=0. Thus, 0=2a+b--> b=-2a --> 2=a-2a --> -2=a

f(10) = -2*100+10(4)+1 --> -159

This can be solved in the following way too:

We have \(f(x)=ax^2+bx+c\).

\(f(0)=c=1\) --> \(f(x)=ax^2+bx+1\)

We are told that \(f_{max}(1)=a+b+1=3\), --> \(a+b=2\).

\(f_{max}\) is vertex of parabola and the \(x\) coordinate of vertex is \(-\frac{b}{2a}=1\) --> \(b=-2a\) --> \(a+b=a-2a=-a=2\) --> \(a=-2\) and \(b=4\).

You've got 3 points and 3 equations, so you could use a system of equations to solve. Coordinates: (1,3) Given, (0,1) Given, and (2,1) Implied. I got (2,1) by doing a really rough sketch and seeing that (2,1) is a mirror of (0,1) with (1,3) as the max.

3 systems in quadratic form: a(1)^2 + b(1) + c = 3 a(0)^2 + b(0) + c = 1 a(2)^2 + b(2) + c = 1

a + b + c = 3 c = 1 4a + 2b + c = 1

Solving this would yield a = -2, b = 4, c = 1. f(x) = -2x^2 + 4x + 1

I understand how you arrived at the f(x)=ax^2+bx+c, but you I don't fully understand how you arrived at 2x^2+4x+1. Could you please explain a little more?

I understand how you arrived at the f(x)=ax^2+bx+c, but you I don't fully understand how you arrived at 2x^2+4x+1. Could you please explain a little more?

Posted from my mobile device

We have the function \(f(x)=ax^2+bx+c\).

Stem: the value of the function at x =0 is 1.

Substitute x by 0 --> \(f(0)=1=a*0^2+b*0+c\) --> \(c=1\), hence the function becomes: \(f(x)=ax^2+bx+1\).

Stem: A quadratic function f(x) attains a max of 3 at x =1.

The maximum (or minimum if a>0) of the quadratic function \(f(x)=ax^2+bx+c\) is the y coordinate (the value of f(x)) of the vertex of the given quadratic function, which is parabola.

The vertex of the parabola is located at the point \((-\frac{b}{2a},\) \(c-\frac{b^2}{4a})\).

Given: A quadratic function f(x) attains a max of 3 at x =1 --> coordinates of the vertex are (1, 3) --> \(-\frac{b}{2a}=1\), \(c-\frac{b^2}{4a}=3\)

So we have: \(a+b=2\) and: \(-\frac{b}{2a}=1\)

From this \(a=-2\) and \(b=4\). so the function is: \(f(x)=-2x^2+4x+1\)

Re: A quadratic function f(x) attains a max of 3 at x =1, the [#permalink]

Show Tags

07 Jul 2014, 01:40

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: A quadratic function f(x) attains a max of 3 at x =1, the [#permalink]

Show Tags

18 Aug 2015, 19:51

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: A quadratic function f(x) attains a max of 3 at x =1, the [#permalink]

Show Tags

11 Sep 2015, 23:03

Bunuel wrote:

GMATBLACKBELT wrote:

xcusemeplz2009 wrote:

A quadratic function f(x) attains a max of 3 at x =1, the value of the function at x =0 is 1.the value of f(x) at x =10 is

a)-159, b)-110, c)-180, d)-105, e)-119

Pls explain

Not sure this would be on the GMAT, seems you should use calculus for this.

ax^2+bx+c=0

f(1)=3=a+b+c f(0)=1=c

f'(x)= 2xa+b.

since the max is 3, f'(1)=0. Thus, 0=2a+b--> b=-2a --> 2=a-2a --> -2=a

f(10) = -2*100+10(4)+1 --> -159

This can be solved in the following way too:

We have \(f(x)=ax^2+bx+c\).

\(f(0)=c=1\) --> \(f(x)=ax^2+bx+1\)

We are told that \(f_{max}(1)=a+b+1=3\), --> \(a+b=2\).

\(f_{max}\) is vertex of parabola and the \(x\) coordinate of vertex is \(-\frac{b}{2a}=1\) --> \(b=-2a\) --> \(a+b=a-2a=-a=2\) --> \(a=-2\) and \(b=4\).

\(f(x)=-2x^2+4x+1\) --> \(f(10)=-200+40+1=-159\)

Answer: A.

how should i understand that 1 is the vertex of parabola. is it the reason that x=0 ?please clarify this point

Re: A quadratic function f(x) attains a max of 3 at x =1, the [#permalink]

Show Tags

14 Sep 2016, 14:45

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Version 8.1 of the WordPress for Android app is now available, with some great enhancements to publishing: background media uploading. Adding images to a post or page? Now...

Post today is short and sweet for my MBA batchmates! We survived Foundations term, and tomorrow's the start of our Term 1! I'm sharing my pre-MBA notes...

“Keep your head down, and work hard. Don’t attract any attention. You should be grateful to be here.” Why do we keep quiet? Being an immigrant is a constant...