GMAT Changed on April 16th - Read about the latest changes here

It is currently 25 May 2018, 17:28

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A randomly selected sample population consists of 60% women

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

6 KUDOS received
Intern
Intern
avatar
Joined: 19 May 2014
Posts: 7
A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post Updated on: 02 Jun 2014, 00:10
6
This post received
KUDOS
32
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  85% (hard)

Question Stats:

59% (02:06) correct 41% (02:10) wrong based on 482 sessions

HideShow timer Statistics

A randomly selected sample population consists of 60% women and 40% men. 90% of the women and 15% of the men are colorblind. For a certain experiment, scientists will select one person at a time until they have a colorblind subject. What is the approximate probability of selecting a colorblind person in no more than three tries?

A. 95%
B. 90%
C. 80%
D. 75%
E. 60%

I was able to come up with the double set matrix but could not solve for the probability part. Can you please assist?

Thanks,
Sri

Attachments

Matrix.png
Matrix.png [ 12.5 KiB | Viewed 12216 times ]


Originally posted by gmattesttaker2 on 01 Jun 2014, 22:44.
Last edited by Bunuel on 02 Jun 2014, 00:10, edited 1 time in total.
Renamed the topic and edited the question.
Expert Post
5 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 45423
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 02 Jun 2014, 00:43
5
This post received
KUDOS
Expert's post
11
This post was
BOOKMARKED
gmattesttaker2 wrote:
A randomly selected sample population consists of 60% women and 40% men. 90% of the women and 15% of the men are colorblind. For a certain experiment, scientists will select one person at a time until they have a colorblind subject. What is the approximate probability of selecting a colorblind person in no more than three tries?

A. 95%
B. 90%
C. 80%
D. 75%
E. 60%

Image


According to the matrix the probability of selecting a colorblind person is 0.6 and the probability of NOT selecting a colorblind person is 0.4.

{The probability of selecting a colorblind person in three tries} = 1 - {the probability of NOT selecting a colorblind person in three tries} = 1 - 0.4*0.4*0.4 = 1 - 0.064 = 0.936 = 93.6%.

We are asked to find the approximate probability, so the answer is 95%.

Answer: A.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8079
Location: Pune, India
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 02 Jun 2014, 21:42
1
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
gmattesttaker2 wrote:
A randomly selected sample population consists of 60% women and 40% men. 90% of the women and 15% of the men are colorblind. For a certain experiment, scientists will select one person at a time until they have a colorblind subject. What is the approximate probability of selecting a colorblind person in no more than three tries?

A. 95%
B. 90%
C. 80%
D. 75%
E. 60%

I was able to come up with the double set matrix but could not solve for the probability part. Can you please assist?

Thanks,
Sri


To get to the probability part, all you need is the total % of colorblind people.
Say, there are 100 people - 60 women, 40 men.
Out of 60, 90% women are colorblind i.e. 90% of 60 = 54 women
Out of 40, 15% men are colorblind i.e. 15% of 40 = 6 men

Total 60 people of 100 are colorblind.

P(Selecting colorblind person in 3 tries or less) = 1 - P(Selecting a colorblind person in more than 3 tries) = 1 - (40/100)^3 = 117/125 = approx 95%
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Senior Manager
Senior Manager
avatar
Joined: 08 Apr 2012
Posts: 401
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 29 Jun 2014, 06:00
Bunuel wrote:
gmattesttaker2 wrote:
A randomly selected sample population consists of 60% women and 40% men. 90% of the women and 15% of the men are colorblind. For a certain experiment, scientists will select one person at a time until they have a colorblind subject. What is the approximate probability of selecting a colorblind person in no more than three tries?

A. 95%
B. 90%
C. 80%
D. 75%
E. 60%

Image


According to the matrix the probability of selecting a colorblind person is 0.6 and the probability of NOT selecting a colorblind person is 0.4.

{The probability of selecting a colorblind person in three tries} = 1 - {the probability of NOT selecting a colorblind person in three tries} = 1 - 0.4*0.4*0.4 = 1 - 0.064 = 0.936 = 93.6%.

We are asked to find the approximate probability, so the answer is 95%.

Answer: A.

Doesn't the probability of selection change after the first, second and third?
We are reducing the number of non-color blind people with each try, are we not?
Expert Post
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8079
Location: Pune, India
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 29 Jun 2014, 21:33
ronr34 wrote:
Bunuel wrote:
gmattesttaker2 wrote:
A randomly selected sample population consists of 60% women and 40% men. 90% of the women and 15% of the men are colorblind. For a certain experiment, scientists will select one person at a time until they have a colorblind subject. What is the approximate probability of selecting a colorblind person in no more than three tries?

A. 95%
B. 90%
C. 80%
D. 75%
E. 60%

Image


According to the matrix the probability of selecting a colorblind person is 0.6 and the probability of NOT selecting a colorblind person is 0.4.

{The probability of selecting a colorblind person in three tries} = 1 - {the probability of NOT selecting a colorblind person in three tries} = 1 - 0.4*0.4*0.4 = 1 - 0.064 = 0.936 = 93.6%.

We are asked to find the approximate probability, so the answer is 95%.

Answer: A.

Doesn't the probability of selection change after the first, second and third?
We are reducing the number of non-color blind people with each try, are we not?


We don't know the size of the sample population so it is not possible to change the probability. Also the word population is used so the assumption is that we select one person, find he is not colorblind, then let him be. We do not remove him from the population. Then we pick another person and check.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Intern
Intern
avatar
B
Joined: 07 Mar 2014
Posts: 10
Concentration: Marketing, Finance
GMAT 1: 660 Q50 V29
GMAT 2: 690 Q50 V33
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 06 Aug 2014, 01:44
Bunuel wrote:
gmattesttaker2 wrote:
A randomly selected sample population consists of 60% women and 40% men. 90% of the women and 15% of the men are colorblind. For a certain experiment, scientists will select one person at a time until they have a colorblind subject. What is the approximate probability of selecting a colorblind person in no more than three tries?

A. 95%
B. 90%
C. 80%
D. 75%
E. 60%

Image


According to the matrix the probability of selecting a colorblind person is 0.6 and the probability of NOT selecting a colorblind person is 0.4.

{The probability of selecting a colorblind person in three tries} = 1 - {the probability of NOT selecting a colorblind person in three tries} = 1 - 0.4*0.4*0.4 = 1 - 0.064 = 0.936 = 93.6%.

We are asked to find the approximate probability, so the answer is 95%.

Answer: A.



Why did you assume that each selection is without replacement?
Manager
Manager
User avatar
Joined: 14 Mar 2014
Posts: 148
GMAT 1: 710 Q50 V34
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 06 Aug 2014, 02:41
Bunuel wrote:
gmattesttaker2 wrote:
A randomly selected sample population consists of 60% women and 40% men. 90% of the women and 15% of the men are colorblind. For a certain experiment, scientists will select one person at a time until they have a colorblind subject. What is the approximate probability of selecting a colorblind person in no more than three tries?

A. 95%
B. 90%
C. 80%
D. 75%
E. 60%

According to the matrix the probability of selecting a colorblind person is 0.6 and the probability of NOT selecting a colorblind person is 0.4.

{The probability of selecting a colorblind person in three tries} = 1 - {the probability of NOT selecting a colorblind person in three tries} = 1 - 0.4*0.4*0.4 = 1 - 0.064 = 0.936 = 93.6%.

We are asked to find the approximate probability, so the answer is 95%.

Answer: A.




It isnt' mentioned any where in the question that they are replaced. How could the probability remain same i.e 0.4 throughout ?
_________________

I'm happy, if I make math for you slightly clearer
And yes, I like kudos
¯\_(ツ)_/¯ :-)

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8079
Location: Pune, India
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 06 Aug 2014, 04:23
1
This post received
KUDOS
Expert's post
rohan567 wrote:


Why did you assume that each selection is without replacement?



As I mentioned above, it is implied in the question. We don't know the size of the sample population so it is not possible to change the probability. Also the word population is used so the assumption is that we select one person, find he is not colorblind, then let him be. We do not remove him from the population. Then we pick another person and check.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Manager
Manager
User avatar
Joined: 12 Jan 2015
Posts: 211
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 06 May 2016, 11:42
Hi VeritasPrepKarishma / chetan2u,

I am not able to understand this method-

{The probability of selecting a colorblind person in three tries} = 1 - {the probability of NOT selecting a colorblind person in three tries} = 1 - 0.4*0.4*0.4 = 1 - 0.064 = 0.936 = 93.6%.

_________________________________________

I would have used this method if the question have asked about to find the probability of ATLEAST 3 colorblind person.
Then I first find the probability of of person who NOT colorblind and then subtract it from 1.
_________________________________________

Can you please assist..?

Thanks and Regards,
Prakhar
_________________

Thanks and Regards,
Prakhar

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 5780
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 06 May 2016, 19:02
1
This post received
KUDOS
Expert's post
PrakharGMAT wrote:
Hi VeritasPrepKarishma / chetan2u,

I am not able to understand this method-

{The probability of selecting a colorblind person in three tries} = 1 - {the probability of NOT selecting a colorblind person in three tries} = 1 - 0.4*0.4*0.4 = 1 - 0.064 = 0.936 = 93.6%.

_________________________________________

I would have used this method if the question have asked about to find the probability of ATLEAST 3 colorblind person.
Then I first find the probability of of person who NOT colorblind and then subtract it from 1.
_________________________________________

Can you please assist..?

Thanks and Regards,
Prakhar



Hi PrakharGMAT,

the Q asks us - Prob of choosing a colorblind in not more than 3 choices... OR a colorblind is choosen in any of the three chances....

now 60% are W, 90% are colorblind - so .54 ..
40% are M. 15% are colrblind - .06...
total .54+.06 = 0.6..
so NOT a colorblind = 1-0.6 = 0.4


for this you can do it in two ways,,..



1) take ways in which 1 out of 3 or 2 out of 3 or 3out of three are colorblind- a LONG method
a) 1 out of 3 - .6*.4*.4 *3 = .288
b) 2 out of 3 - .6*.6*.4*3 = .432
c) 3 out of 3 - .6*.6*.6 = .216
add all three .288+.432+.216 = .936
we have multiplied a and b by 3 because in three ways the colorblind or non-colorblind can be choosen - CNN, NCN and NNC

2) the easier way is to find the way wherein NONE of the 3 choosen are colorblind and then subtract that from 1..

so prob that no colorblind is choosen in 3 chances = .4*.4*.4
and prob that atleast one in three is colorblind = 1-none are colorblind = 1-.4*.4*.4 = .936
_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html


GMAT online Tutor

Manager
Manager
avatar
S
Joined: 13 Dec 2013
Posts: 163
Location: United States (NY)
Concentration: Nonprofit, International Business
GMAT 1: 710 Q46 V41
GMAT 2: 720 Q48 V40
GPA: 4
WE: Consulting (Consulting)
Reviews Badge
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 01 May 2017, 14:16
Bunuel wrote:
gmattesttaker2 wrote:
A randomly selected sample population consists of 60% women and 40% men. 90% of the women and 15% of the men are colorblind. For a certain experiment, scientists will select one person at a time until they have a colorblind subject. What is the approximate probability of selecting a colorblind person in no more than three tries?

A. 95%
B. 90%
C. 80%
D. 75%
E. 60%

Image


According to the matrix the probability of selecting a colorblind person is 0.6 and the probability of NOT selecting a colorblind person is 0.4.

{The probability of selecting a colorblind person in three tries} = 1 - {the probability of NOT selecting a colorblind person in three tries} = 1 - 0.4*0.4*0.4 = 1 - 0.064 = 0.936 = 93.6%.

We are asked to find the approximate probability, so the answer is 95%.

Answer: A.



A question about calculating the {the probability of NOT selecting a colorblind person in three tries}. Isn't this (4/10)*(3/9)*(2/8)=(24/720)=1/30?
1-(1/30)=29/30=96.67%
Senior Manager
Senior Manager
User avatar
G
Joined: 03 Apr 2013
Posts: 288
Location: India
Concentration: Marketing, Finance
Schools: Simon '20
GMAT 1: 740 Q50 V41
GPA: 3
GMAT ToolKit User
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 06 Jul 2017, 10:45
VeritasPrepKarishma wrote:
rohan567 wrote:


Why did you assume that each selection is without replacement?



As I mentioned above, it is implied in the question. We don't know the size of the sample population so it is not possible to change the probability. Also the word population is used so the assumption is that we select one person, find he is not colorblind, then let him be. We do not remove him from the population. Then we pick another person and check.


Hi VeritasPrepKarishma

Because you have said that we don't know the sample size, wouldn't

1 - P(probability of choosing no colorblind in 3 or less tries)

give us

Probability of choosing a colorblind in more than 3 tries + Probability of never choosing a colorblind?
_________________

Spread some love..Like = +1 Kudos :)

Intern
Intern
avatar
Joined: 28 Apr 2017
Posts: 5
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 06 Jul 2017, 12:05
I have one doubt .. question says in the experiment scientist will look for a color blind subject until they find one ... It should mean that if he finds on the first turn he would not go for another check .
Please clarify

Sent from my MotoG3 using GMAT Club Forum mobile app
Expert Post
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8079
Location: Pune, India
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 07 Jul 2017, 05:12
ShashankDave wrote:
VeritasPrepKarishma wrote:
rohan567 wrote:


Why did you assume that each selection is without replacement?



As I mentioned above, it is implied in the question. We don't know the size of the sample population so it is not possible to change the probability. Also the word population is used so the assumption is that we select one person, find he is not colorblind, then let him be. We do not remove him from the population. Then we pick another person and check.


Hi VeritasPrepKarishma

Because you have said that we don't know the sample size, wouldn't

1 - P(probability of choosing no colorblind in 3 or less tries)

give us

Probability of choosing a colorblind in more than 3 tries + Probability of never choosing a colorblind?


We know that "90% of the women and 15% of the men are colorblind".
Eventually, they are bound to pick a colorblind person.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8079
Location: Pune, India
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 07 Jul 2017, 05:22
1
This post received
KUDOS
Expert's post
vivsleo wrote:
I have one doubt .. question says in the experiment scientist will look for a color blind subject until they find one ... It should mean that if he finds on the first turn he would not go for another check .
Please clarify

Sent from my MotoG3 using GMAT Club Forum mobile app


Yes, that is correct. But instead of calculating all that - get a subject on first try, second try or third try, it is easier to calculate "not get a subject on each of the first three tries."
See the solutions given above.

Note that the answer would be the same.
First try = 60/100
Second try = 40/100 * 60/100
Third try = 40/100 * 40/100 * 60/100

Total = 3/5 + 6/25 + 12/125 = 117/125
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Expert Post
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2442
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 12 Jul 2017, 16:28
Expert's post
1
This post was
BOOKMARKED
gmattesttaker2 wrote:
A randomly selected sample population consists of 60% women and 40% men. 90% of the women and 15% of the men are colorblind. For a certain experiment, scientists will select one person at a time until they have a colorblind subject. What is the approximate probability of selecting a colorblind person in no more than three tries?

A. 95%
B. 90%
C. 80%
D. 75%
E. 60%


If the sample population has 60% women and 40% men, and 90% of the women and 15% of the men are colorblind, then the probability that a randomly selected person is colorblind is (0.6)(0.9) + (0.4)(0.15) = 0.54 + 0.06 = 0.6. This also means that the probability that a randomly selected person is not colorblind is 0.4.

We need to determine the probability of selecting a colorblind person in no more than 3 tries.

Let’s calculate the probability for each possible scenario:

Scenario 1: A colorblind person is chosen on the first try.

P(colorblind person is chosen on the first try) = 0.6

Scenario 2: A colorblind person is chosen on the second try. (That is, a non-colorblind person is chosen on the first try.)

P(colorblind person is chosen on the second try) = 0.4 x 0.6 = 0.24

Scenario 3: A color blind person is chosen on the third try. (That is, a non-colorblind person is chosen on each of the first two tries.)

P(colorblind person is chosen on the third try) = 0.4 x 0.4 x 0.6 = 0.096

Thus, the probability of selecting a colorblind person on no more than three tries is 0.6 + 0.24 + 0.096 = 0.936 = 93.6%, which is approximately 95%.

Answer: A
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Intern
Intern
avatar
B
Joined: 06 Apr 2016
Posts: 22
GMAT 1: 720 Q49 V40
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 09 Sep 2017, 06:18
VeritasPrepKarishma wrote:
rohan567 wrote:


Why did you assume that each selection is without replacement?



As I mentioned above, it is implied in the question. We don't know the size of the sample population so it is not possible to change the probability. Also the word population is used so the assumption is that we select one person, find he is not colorblind, then let him be. We do not remove him from the population. Then we pick another person and check.




Hi Karishma,

As Rohan567 pointed out, we can't replace the selected persons back in to the lot since we know the status of the person once we select them.

So, even if we do without the replacement we will receive the correct answer (but it takes a few more seconds to calculate)

This is how I did it.

From the question we understand that out of total population 60% are colour blind

Hence, by removing the percentage and assuming real numbers we get 60 people out of the 100 are colour blind.

Hence the probability of selecting a colour blind person in the first 3 tries is

= 1- (Probability of not selecting a colour blind person in the first 3 attempts)

= 1- ( 40/100 * 39/99 * 38/98)

=1- (494/8085)

=1-0.06..

=0.94 = 95% (approx)

Ans A
Expert Post
EMPOWERgmat Instructor
User avatar
D
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 11670
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Re: A randomly selected sample population consists of 60% women [#permalink]

Show Tags

New post 15 Feb 2018, 12:48
Hi All,

There are a couple of different ways to solve this problem. Based on the given info, we have….

60% Women
40% Men

Color-Blind:
90% of Women = (.9)(60%) = 54% of total group
15% of Men = (.15)(40%) = 6% of the total group

NOT Color-Blind = everyone else = 40% of the total group

When it comes to dealing with Probabilities, we can either calculate what we WANT or what we DON'T WANT (and then subtract that result from the number 1 to figure out the probability of what we DO want).

Want + Don't Want = 1

When a probability question gives us multiple tries to accomplish 1 task, it's usually fastest to calculate the probability that we DO NOT accomplish the task, then subtract that from the number 1. Instead of calculating the probability of picking a color-blind person in 3 tries, we'll calculate the probability that we DO NOT select a color-blind person in 3 tries….

Notice the word "approximate"….we can keep things simple….

(NOT)(NOT)(NOT) = (.4)(.4)(.4) = .064 This is the probability of NOT selecting a color-blind person in 3 tries.

The probability of selecting a color-blind person in 3 tries is….

1 - .064 = .936

This is really close to….

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Re: A randomly selected sample population consists of 60% women   [#permalink] 15 Feb 2018, 12:48
Display posts from previous: Sort by

A randomly selected sample population consists of 60% women

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.