Stiv wrote:

A rectangular-shaped carpet remnant that measures x feet by y feet is priced at $50. What is the cost of the carpet, in dollars per square yard? (9 square feet = 1 square yard)

A. 50xy

B. 450xy

C. xy/9

D. xy/50

E. 450/(xy)

Excellent opportunity to use UNITS CONTROL, one of the most powerful tools of our course!

\(9\,\,{\text{f}}{{\text{t}}^2}\,\,\, \leftrightarrow \,\,\,1\,\,{\text{yar}}{{\text{d}}^2}\)

\(\left( {{\text{carpet}}} \right)\,\,xy\,\,{\text{f}}{{\text{t}}^2}\,\,\,\, \leftrightarrow \,\,\,\$ 50\)

\(\left( {{\text{carpet}}} \right)\,\,\,\,\frac{{\$ \,\,\,?}}{{1\,\,\,{\text{yar}}{{\text{d}}^2}\,\,}}\)

\(?\,\, = \,\,\,\left( {\frac{{\$ 50}}{{xy\,\,{\text{f}}{{\text{t}}^2}}}\begin{array}{*{20}{c}}

\nearrow \\

\nearrow

\end{array}} \right)\,\,\,\left( {\frac{{9\,\,{\text{f}}{{\text{t}}^2}}}{{1\,\,{\text{yar}}{{\text{d}}^2}}}\begin{array}{*{20}{c}}

\nearrow \\

\nearrow

\end{array}} \right)\,\,\,\, = \,\,\,\,\frac{{\$ \,\,450}}{{xy\,\,{\text{yar}}{{\text{d}}^2}\,}}\,\,\,\,\mathop = \limits^{{\text{FOCUS}}!} \,\,\,\,\frac{{\$ \left( {\frac{{450}}{{xy}}} \right)}}{{1\,\,{\text{yar}}{{\text{d}}^2}\,\,}}\)

Obs.: arrows indicate licit converters.

This solution follows the notations and rationale taught in the GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here: https://gmath.net