Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 60727

Bill has a set of encyclopedias with 26 volumes, one per letter of the
[#permalink]
Show Tags
27 Nov 2019, 01:58
Question Stats:
39% (01:56) correct 61% (01:50) wrong based on 56 sessions
HideShow timer Statistics
Bill has a set of encyclopedias with 26 volumes, one per letter of the alphabet. He has a special shelf built for them with 26 slots in a row, each labeled alphabetically. After moving to a new house, Bill is faced with the task of putting the books back in their proper slots. He decides to do it in such a way that, during the process, there is never a gap between any of the books that are on the shelf. That is, each book he puts back after the first one is adjacent to a book that is already on the shelf. If he can start with any of the 26 books, how many ways can Bill accomplish his task? A. \(26!\) B. \(2^{25}\) C. \(24!\) D. \(26^2\) E. \(14!12!\) Are You Up For the Challenge: 700 Level Questions
Official Answer and Stats are available only to registered users. Register/ Login.
_________________




Math Expert
Joined: 02 Aug 2009
Posts: 8327

Re: Bill has a set of encyclopedias with 26 volumes, one per letter of the
[#permalink]
Show Tags
15 Jan 2020, 06:06
ShankSouljaBoi wrote: nick1816 wrote: Total number of ways = \(\frac{(n1)!}{(n1)!}+\frac{(n1)!}{1!(n2)!}+........+\frac{(n1)!}{(n2)!1!}+\frac{(n1)!}{(n1)!}\) = \(2^{n1}\) =\(2^{25}\) Bunuel wrote: Bill has a set of encyclopedias with 26 volumes, one per letter of the alphabet. He has a special shelf built for them with 26 slots in a row, each labeled alphabetically. After moving to a new house, Bill is faced with the task of putting the books back in their proper slots. He decides to do it in such a way that, during the process, there is never a gap between any of the books that are on the shelf. That is, each book he puts back after the first one is adjacent to a book that is already on the shelf. If he can start with any of the 26 books, how many ways can Bill accomplish his task? A. \(26!\) B. \(2^{25}\) C. \(24!\) D. \(26^2\) E. \(14!12!\) Are You Up For the Challenge: 700 Level QuestionsHi chetan2u , Could you please help with this one. Thanks Hi.. Such questions have to have a pattern.. (I) 1) If there are 2 books  2 ways.\(=2^1=2^{21}\) 2) If 3 books, there are 4 ways \(=2^2=2^{31}\) choose the corner ones A or C, then 1 way each AND when choose the middle one, two ways BCA or BAC. 3) Therefore, for 26 books \(2^{261}=2^{25}\) (II) There would be a length process, when you choose the first book initially or the second book or so on. calculate the number of ways (III) Logically if we look it other way, it may become a bit simpler Way to place should be SAME as removing it. So if you place all 26, first book can be either of the corners, A or Z, so 2 ways. The moment we pick the first one, we again have two in the corners, so again TWO ways. This will continue till last one is left, that can be picked in 1 way. Total ways = \(2*2*2..(25 times)*1=2^{25} \) B (IV) I have not tried, but should work. I can take the left ones as step upwards and right ones as step downwards, and now we have to move from one corner to opposite corner, where total steps are 25. for example say we start from E, so 4 ( A,B,C,D) upwards and remaining sideways. E is in one corner and you have to take shortest route to the opposite corner
_________________




VP
Joined: 19 Oct 2018
Posts: 1297
Location: India

Bill has a set of encyclopedias with 26 volumes, one per letter of the
[#permalink]
Show Tags
27 Nov 2019, 06:03
Total number of ways = \(\frac{(n1)!}{(n1)!}+\frac{(n1)!}{1!(n2)!}+........+\frac{(n1)!}{(n2)!1!}+\frac{(n1)!}{(n1)!}\) = \(2^{n1}\) =\(2^{25}\) Bunuel wrote: Bill has a set of encyclopedias with 26 volumes, one per letter of the alphabet. He has a special shelf built for them with 26 slots in a row, each labeled alphabetically. After moving to a new house, Bill is faced with the task of putting the books back in their proper slots. He decides to do it in such a way that, during the process, there is never a gap between any of the books that are on the shelf. That is, each book he puts back after the first one is adjacent to a book that is already on the shelf. If he can start with any of the 26 books, how many ways can Bill accomplish his task? A. \(26!\) B. \(2^{25}\) C. \(24!\) D. \(26^2\) E. \(14!12!\) Are You Up For the Challenge: 700 Level Questions



Intern
Joined: 24 Jun 2019
Posts: 13

Re: Bill has a set of encyclopedias with 26 volumes, one per letter of the
[#permalink]
Show Tags
16 Dec 2019, 12:54
nick1816 wrote: Total number of ways = \(\frac{(n1)!}{(n1)!}+\frac{(n1)!}{1!(n2)!}+........+\frac{(n1)!}{(n2)!1!}+\frac{(n1)!}{(n1)!}\) = \(2^{n1}\) =\(2^{25}\) Bunuel wrote: Bill has a set of encyclopedias with 26 volumes, one per letter of the alphabet. He has a special shelf built for them with 26 slots in a row, each labeled alphabetically. After moving to a new house, Bill is faced with the task of putting the books back in their proper slots. He decides to do it in such a way that, during the process, there is never a gap between any of the books that are on the shelf. That is, each book he puts back after the first one is adjacent to a book that is already on the shelf. If he can start with any of the 26 books, how many ways can Bill accomplish his task? A. \(26!\) B. \(2^{25}\) C. \(24!\) D. \(26^2\) E. \(14!12!\) Are You Up For the Challenge: 700 Level QuestionsCan you please explain your solution?I didn't understand it. Thanks,



Senior Manager
Joined: 21 Jun 2017
Posts: 399
Location: India
Concentration: Finance, Economics
GPA: 3
WE: Corporate Finance (Commercial Banking)

Re: Bill has a set of encyclopedias with 26 volumes, one per letter of the
[#permalink]
Show Tags
14 Jan 2020, 04:57
nick1816 wrote: Total number of ways = \(\frac{(n1)!}{(n1)!}+\frac{(n1)!}{1!(n2)!}+........+\frac{(n1)!}{(n2)!1!}+\frac{(n1)!}{(n1)!}\) = \(2^{n1}\) =\(2^{25}\) Bunuel wrote: Bill has a set of encyclopedias with 26 volumes, one per letter of the alphabet. He has a special shelf built for them with 26 slots in a row, each labeled alphabetically. After moving to a new house, Bill is faced with the task of putting the books back in their proper slots. He decides to do it in such a way that, during the process, there is never a gap between any of the books that are on the shelf. That is, each book he puts back after the first one is adjacent to a book that is already on the shelf. If he can start with any of the 26 books, how many ways can Bill accomplish his task? A. \(26!\) B. \(2^{25}\) C. \(24!\) D. \(26^2\) E. \(14!12!\) Are You Up For the Challenge: 700 Level QuestionsHi chetan2u , Could you please help with this one. Thanks



Intern
Joined: 30 Nov 2019
Posts: 13

Bill has a set of encyclopedias with 26 volumes, one per letter of the
[#permalink]
Show Tags
14 Jan 2020, 10:49
Bunuel wrote: Bill has a set of encyclopedias with 26 volumes, one per letter of the alphabet. He has a special shelf built for them with 26 slots in a row, each labeled alphabetically. After moving to a new house, Bill is faced with the task of putting the books back in their proper slots. He decides to do it in such a way that, during the process, there is never a gap between any of the books that are on the shelf. That is, each book he puts back after the first one is adjacent to a book that is already on the shelf. If he can start with any of the 26 books, how many ways can Bill accomplish his task? A. \(26!\) B. \(2^{25}\) C. \(24!\) D. \(26^2\) E. \(14!12!\) Are You Up For the Challenge: 700 Level Questionshere we have to place books such that no space is there between them so first select a book and place it in the rack (since the position is determined with respect to the first book placed) so now after placing the first book from second book we have to places for every book ie either extreme right or extreme left hence 2^25(as there are 25 books left)



Intern
Joined: 11 Nov 2019
Posts: 3

Re: Bill has a set of encyclopedias with 26 volumes, one per letter of the
[#permalink]
Show Tags
14 Jan 2020, 14:34
I have a question.
It seems to me that the task will be completed in 26 steps.
Step 1: Select the first book. This can be done in 26 ways Step 2: There are only 2 books you can select that leave no gaps, so the second book can be selected 2 ways . . . Step 26: You are at the last book, there is only 1 way this one can be selected
So why isn't the answer:
26*2^24*1
or written differently
13*2^25
?
Thank you in advance



Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 9159
Location: United States (CA)

Re: Bill has a set of encyclopedias with 26 volumes, one per letter of the
[#permalink]
Show Tags
16 Jan 2020, 07:27
Bunuel wrote: Bill has a set of encyclopedias with 26 volumes, one per letter of the alphabet. He has a special shelf built for them with 26 slots in a row, each labeled alphabetically. After moving to a new house, Bill is faced with the task of putting the books back in their proper slots. He decides to do it in such a way that, during the process, there is never a gap between any of the books that are on the shelf. That is, each book he puts back after the first one is adjacent to a book that is already on the shelf. If he can start with any of the 26 books, how many ways can Bill accomplish his task? A. \(26!\) B. \(2^{25}\) C. \(24!\) D. \(26^2\) E. \(14!12!\) Are You Up For the Challenge: 700 Level Questions Solution:Instead of starting with 26 volumes, let’s look at some easier examples that will allow us to develop a pattern which will be applicable for the entire set of 26 volumes. For example, let’s assume the set of encyclopedias has only 3 volumes: A, B, and C. If Bill starts with A, then he can only put them as ABC. If he starts with B, then he can put them as BAC or as BCA. If he starts with C, then he can only put them as CBA. We see that if there are 3 volumes, there are 4 ways to put the books onto the shelf. (Note: The three letter arrangements with hyphens, BAC for example, means the order the books are put onto the shelf. In this case, B is the first book to put onto the shelf, A is the second and C is the third. It doesn’t mean the arrangement of the books on the shelf is BAC since, after all, when all the books are put onto the shelf, the arrangement, from left to right, should be ABC.) Now let’s say there are 4 volumes: A, B, C and D. If Bill starts with A, then he can only put them as ABCD. If he starts with B, then he can put them as BACD, BCAD or as BCDA. If he starts with C, then he can put them as CBAD, CBDA, CDBA. Finally, if he starts with D, then he can only put them as DCBA.We see that if there are 4 volumes, there are 8 ways to put the books onto the shelf. From this, we can see a pattern. Let n be the number of volumes. If n = 3, the total number of ways is 4 = 2^2 = 2^(3  1). If n = 4, the total number of ways is 8 = 2^3 = 2^(4  1). Therefore, if n = 26, the total number of ways is 2^(26  1) = 2^25. Alternate Solution:Notice that the number of ways Bill can shelvethe books is the same as the number of ways he can unshelve the books without leaving any gaps. To see that, suppose B1  B2  B3  …  B26 is one of the allowable ways of putting the books on shelves. Then, we can simply reverse the order and remove books from the shelf in the order B26  B25  …  B1. Using this fact, we will count the number of ways he can unshelve the books. Beginning with the 26 books on the shelf, he can remove either the leftmost book or the right most book on the shelf in order to avoid leaving any gaps. He has two choices for the first book. Once the first book is removed, he can remove either the leftmost book or the right most book from the remaining 25 books. He has two choices for the second book. Continuing the pattern, he will have 2 choices for all but the last book. When there is only one book left at the shelf, he will have only one choice. Thus, the number of ways Bill can accomplish the task is 2^25. Answer: B
_________________
5star rated online GMAT quant self study course See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews If you find one of my posts helpful, please take a moment to click on the "Kudos" button.




Re: Bill has a set of encyclopedias with 26 volumes, one per letter of the
[#permalink]
16 Jan 2020, 07:27






