Last visit was: 19 Nov 2025, 10:52 It is currently 19 Nov 2025, 10:52
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
AndreG
Joined: 22 Jun 2010
Last visit: 09 Dec 2010
Posts: 29
Own Kudos:
302
 [181]
Given Kudos: 10
Posts: 29
Kudos: 302
 [181]
12
Kudos
Add Kudos
169
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,306
 [101]
48
Kudos
Add Kudos
53
Bookmarks
Bookmark this Post
User avatar
CrackverbalGMAT
User avatar
Major Poster
Joined: 03 Oct 2013
Last visit: 19 Nov 2025
Posts: 4,844
Own Kudos:
8,945
 [19]
Given Kudos: 225
Affiliations: CrackVerbal
Location: India
Expert
Expert reply
Posts: 4,844
Kudos: 8,945
 [19]
15
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
General Discussion
User avatar
shrouded1
User avatar
Retired Moderator
Joined: 02 Sep 2010
Last visit: 29 Apr 2018
Posts: 609
Own Kudos:
3,191
 [1]
Given Kudos: 25
Location: London
Products:
Posts: 609
Kudos: 3,191
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
feruz77
the product of all integers from 1 to 100 will have the following number of zeros at the end:
a) 20
b) 24
c) 19
d) 22
e) 28

pls, help with solution method!

Search through the forums (read the math book). There is several threads discussing this.

The number of trailing zeros in 100! is (100/5)+(100/25)=24

Answer : (b)
avatar
swaraj
Joined: 24 Jun 2010
Last visit: 28 Feb 2011
Posts: 9
Own Kudos:
16
 [1]
Posts: 9
Kudos: 16
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
the question can be re-framed as (100!/10^x) now find x?

100!/(2*5)^x---now factorize 100! by 2 and 5

when factorized by 5 will give the least power 24
Ans 24
User avatar
nonameee
Joined: 23 Apr 2010
Last visit: 30 Sep 2013
Posts: 475
Own Kudos:
Given Kudos: 7
Posts: 475
Kudos: 392
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is this a relevant GMAT question? Thank you.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,306
 [5]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,306
 [5]
1
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
nonameee
Is this a relevant GMAT question? Thank you.

Why do you think that it's not? I've seen several GMAT questions testing the trailing zeros concept (everything-about-factorials-on-the-gmat-85592.html):
factorial-one-106060.html
product-of-sequence-101187.html
how-many-zeroes-at-the-end-of-101752.html
least-value-of-n-m09q33-76716.html
number-properties-from-gmatprep-84770.html
User avatar
Paris75
Joined: 26 Aug 2013
Last visit: 22 Jul 2024
Posts: 128
Own Kudos:
Given Kudos: 401
Status:Student
Location: France
Concentration: Finance, General Management
Schools: EMLYON FT'16
GMAT 1: 650 Q47 V32
GPA: 3.44
Schools: EMLYON FT'16
GMAT 1: 650 Q47 V32
Posts: 128
Kudos: 136
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel,

just a question that I have in mind:

You ALWAYS divide by 5? You never divide by another prime factor for those type of questions?

if yes what are the exceptions?

Thanks!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,306
 [7]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,306
 [7]
1
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
Paris75
Hi Bunuel,

just a question that I have in mind:

You ALWAYS divide by 5? You never divide by another prime factor for those type of questions?

if yes what are the exceptions?

Thanks!

For trailing zeros we need only the power of 5. Check here for theory: everything-about-factorials-on-the-gmat-85592.html

Similar questions to practice:
if-n-is-the-greatest-positive-integer-for-which-2n-is-a-fact-144694.html
what-is-the-largest-power-of-3-contained-in-103525.html
if-n-is-the-product-of-all-positive-integers-less-than-103218.html
if-n-is-the-product-of-integers-from-1-to-20-inclusive-106289.html
if-n-is-the-product-of-all-multiples-of-3-between-1-and-101187.html
if-p-is-the-product-of-integers-from-1-to-30-inclusive-137721.html
what-is-the-greatest-value-of-m-such-that-4-m-is-a-factor-of-105746.html
if-6-y-is-a-factor-of-10-2-what-is-the-greatest-possible-129353.html
if-m-is-the-product-of-all-integers-from-1-to-40-inclusive-108971.html
if-p-is-a-natural-number-and-p-ends-with-y-trailing-zeros-108251.html
if-73-has-16-zeroes-at-the-end-how-many-zeroes-will-147353.html
find-the-number-of-trailing-zeros-in-the-expansion-of-108249.html
how-many-zeros-are-the-end-of-142479.html
how-many-zeros-does-100-end-with-100599.html
find-the-number-of-trailing-zeros-in-the-product-of-108248.html
if-60-is-written-out-as-an-integer-with-how-many-consecuti-97597.html
if-n-is-a-positive-integer-and-10-n-is-a-factor-of-m-what-153375.html
if-d-is-a-positive-integer-and-f-is-the-product-of-the-first-126692.html

Hope it helps.
User avatar
SVaidyaraman
Joined: 17 Dec 2012
Last visit: 11 Jul 2025
Posts: 576
Own Kudos:
1,795
 [5]
Given Kudos: 20
Location: India
Expert
Expert reply
Posts: 576
Kudos: 1,795
 [5]
5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
What does this question test?

It asks for the number of zeros 100! ends with. If a number ends with zero it has to be a multiple of 10. So essentially we have to find out how many times in 100! does multiplication by 10 happen. But multiplication by 10 also happens when multiplication by both 5 and 2 happen. So it is better to see the factors of the number and then find the number of times multiplication by all those factors happen.

Consider the simpler example. 4*5*6. How many zeros does it end with?

We see 2 occurs twice in 4 which is 2*2, and once in 6 which is 2*3 and 5 occurs only once. So 5 is a limiting factor. Since 5 occurs only once, the number of times multiplication by both 5 and 2 happen or in other words the number of times multiplication by 10 happens or the number of zeros the number ends with is only 1.

In the case of 100!, 5 occurs in 5, 10, 15, 20 and so on up to 100 i.e, 20 times. But remember 5 occurs twice in 25 which is 5*5 , twice in 50 which is 5*5*2 and similarly twice each in 75 and 100. So it actually occurs 24 times.

2 occurs a lot more times and so 5 is the limiting factor.

Applying the same logic as in the simpler example, the number of zeros 100! ends with is 24.
avatar
scottleey
Joined: 08 Jun 2014
Last visit: 17 May 2016
Posts: 3
Given Kudos: 266
Posts: 3
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Guys,

Am still abit confused about the whole concept. Some clarification would be appreciated.

With the formula, I see that the trailing zeros for the following are:
1) For 32!, (32/5) + (32/25) = 7
2) For 25!, (25/5) + (25/25) = 6
3) For 10!, (10/5) = 2
4) For 5!, (5/5) = 1

However, as i plug the numbers in and count on the calculator, the answer is different
1) For 32!, 263,130,836,933,693,000,000,000,000,000,000,000. A total of 21 trailing zeros
2) For 25!, 15,511,210,043,331,000,000,000,000. A total of 12 trailing zeros
3) For 10!, 3,628,800. A total of 2 trailing zeros
4) For 5!, 120. A total of 1 trailing zeros

Why is it that the first 2 doesnt comply whereas the last 2 does. I mean I understand the answer is correct here but am just trying to get my head around this.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,306
Kudos
Add Kudos
Bookmarks
Bookmark this Post
scottleey
Hi Guys,

Am still abit confused about the whole concept. Some clarification would be appreciated.

With the formula, I see that the trailing zeros for the following are:
1) For 32!, (32/5) + (32/25) = 7
2) For 25!, (25/5) + (25/25) = 6
3) For 10!, (10/5) = 2
4) For 5!, (5/5) = 1

However, as i plug the numbers in and count on the calculator, the answer is different
1) For 32!, 263,130,836,933,693,000,000,000,000,000,000,000. A total of 21 trailing zeros
2) For 25!, 15,511,210,043,331,000,000,000,000. A total of 12 trailing zeros
3) For 10!, 3,628,800. A total of 2 trailing zeros
4) For 5!, 120. A total of 1 trailing zeros

Why is it that the first 2 doesnt comply whereas the last 2 does. I mean I understand the answer is correct here but am just trying to get my head around this.

Use better calculator: https://www.wolframalpha.com
User avatar
TeamGMATIFY
Joined: 20 Aug 2015
Last visit: 31 Oct 2016
Posts: 339
Own Kudos:
Given Kudos: 10
Location: India
GMAT 1: 760 Q50 V44
Expert
Expert reply
GMAT 1: 760 Q50 V44
Posts: 339
Kudos: 1,504
Kudos
Add Kudos
Bookmarks
Bookmark this Post
scottleey
Hi Guys,

Am still abit confused about the whole concept. Some clarification would be appreciated.

With the formula, I see that the trailing zeros for the following are:
1) For 32!, (32/5) + (32/25) = 7
2) For 25!, (25/5) + (25/25) = 6
3) For 10!, (10/5) = 2
4) For 5!, (5/5) = 1

However, as i plug the numbers in and count on the calculator, the answer is different
1) For 32!, 263,130,836,933,693,000,000,000,000,000,000,000. A total of 21 trailing zeros
2) For 25!, 15,511,210,043,331,000,000,000,000. A total of 12 trailing zeros
3) For 10!, 3,628,800. A total of 2 trailing zeros
4) For 5!, 120. A total of 1 trailing zeros

Why is it that the first 2 doesnt comply whereas the last 2 does. I mean I understand the answer is correct here but am just trying to get my head around this.
I think there is some problem with the calculator that you are using

32! = 263130836933693530167218012160000000
25! = 15511210043330985984000000
Both of these values comply with our understanding.

You can try the calculation here: https://www.calculatorsoup.com/calculato ... orials.php
avatar
ajinkya17
Joined: 13 Feb 2017
Last visit: 23 Mar 2018
Posts: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
AndreG
How many zeros does 100! end with?
• 20
• 24
• 25
• 30
• 32

expl.
Find how many times the factor 5 is contained in 100!. That is, we have to find the largest such that 100! is divisible by . There are 20 multiples of 5 in the first hundred but 25, 50, 75, and 100 have to be counted twice because they are divisible by \(25 = 5^2\) . So, the answer is 24.
The correct answer is B.

I have absolutely no Idea what they are telling me...
Can someone please post a simple explanation for the rationale behind the explanation, or (even better) provide an alternative simple approach?

Thanks!

Trailing zeros:
Trailing zeros are a sequence of 0's in the decimal representation (or more generally, in any positional representation) of a number, after which no other digits follow.

Fro example, 125000 has 3 trailing zeros (125000);

The number of trailing zeros in the decimal representation of n!, the factorial of a non-negative integer n, can be determined with this formula:

\(\frac{n}{5}+\frac{n}{5^2}+\frac{n}{5^3}+...+\frac{n}{5^k}\), where k must be chosen such that 5^(k+1)>n

It's more simple if you look at an example:

How many zeros are in the end (after which no other digits follow) of 32!?
\(\frac{32}{5}+\frac{32}{5^2}=6+1=7\) (denominator must be less than 32, \(5^2=25\) is less)

So there are 7 zeros in the end of 32!

The formula actually counts the number of factors 5 in n!, but since there are at least as many factors 2, this is equivalent to the number of factors 10, each of which gives one more trailing zero.

BACK TO THE ORIGINAL QUESTION:

According to above 100! has \(\frac{100}{5}+\frac{100}{25}=20+4=24\) trailing zeros.

Answer: B.

For more on this issues check Factorials and Number Theory links in my signature.

Hope it helps.

Hi All,

I have found a faster approach to solve these kind of questions:

For trailing zero's: we need to check how many 5's are there in the number. So we can just divide the n by 5 and add the quotients:

100!
5 | 100
5 | 20
5 | 4
5 | 0

Add 20+4+0 = 24
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,977
Own Kudos:
8,390
 [2]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,977
Kudos: 8,390
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
AndreG
How many zeros does 100! end with?

A. 20
B. 24
C. 25
D. 30
E. 32

We are looking the number of 2-and-5 pairs in 100! since each pair produces a factor of 10 and thus a 0 at the end of 100!. There are more factors of 2 than 5 in 100!, so the question is: how many factors 5 are there?

We can use the following trick: Divide 100 by 5 and its subsequent quotients by 5 as long as the quotient is nonzero (and each time ignore any nonzero remainder). The final step is add up all these nonzero quotients and that will be the number of factors of 5 in 100!.

100/5 = 20

20/5 = 4

Since 4/5 has a zero quotient, we can stop here. We see that 20 + 4 = 24, so there are 24 factors 5 (and hence 10) in 100!. So 100! ends with 24 zeros.

Answer: B
avatar
olgaromazan
Joined: 08 Oct 2018
Last visit: 11 Apr 2020
Posts: 2
Given Kudos: 44
Location: Ukraine
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AndreG
How many zeros does 100! end with?

A. 20
B. 24
C. 25
D. 30
E. 32

expl.
Find how many times the factor 5 is contained in 100!. That is, we have to find the largest such that 100! is divisible by . There are 20 multiples of 5 in the first hundred but 25, 50, 75, and 100 have to be counted twice because they are divisible by \(25 = 5^2\) . So, the answer is 24.
The correct answer is B.

I have absolutely no Idea what they are telling me...
Can someone please post a simple explanation for the rationale behind the explanation, or (even better) provide an alternative simple approach?

Thanks!

I took 100! in excel, and I've got this = 9.3326E+157
So, 100! ends with a lot more 0 than 24.

Did i miss something?
Really appreciated for explanation.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,306
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,306
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
olgaromazan
AndreG
How many zeros does 100! end with?

A. 20
B. 24
C. 25
D. 30
E. 32

expl.
Find how many times the factor 5 is contained in 100!. That is, we have to find the largest such that 100! is divisible by . There are 20 multiples of 5 in the first hundred but 25, 50, 75, and 100 have to be counted twice because they are divisible by \(25 = 5^2\) . So, the answer is 24.
The correct answer is B.

I have absolutely no Idea what they are telling me...
Can someone please post a simple explanation for the rationale behind the explanation, or (even better) provide an alternative simple approach?

Thanks!

I took 100! in excel, and I've got this = 9.3326E+157
So, 100! ends with a lot more 0 than 24.

Did i miss something?
Really appreciated for explanation.

In short - don't trust Excel, trust experts above.

100! = 93326215443944152681699238856266700490715968264381621468592963895
217599993229915608941463976156518286253697920827223758251185210916864
000000000000000000000000
User avatar
MathRevolution
User avatar
Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Last visit: 27 Sep 2022
Posts: 10,070
Own Kudos:
Given Kudos: 4
GMAT 1: 760 Q51 V42
GPA: 3.82
Expert
Expert reply
GMAT 1: 760 Q51 V42
Posts: 10,070
Kudos: 19,391
Kudos
Add Kudos
Bookmarks
Bookmark this Post
To find the number of 0's in 100! let us find the number of [5's] in 100!

=> \(\frac{100 }{ 5}\) + \(\frac{100 }{ (5^2)}\) + \(\frac{100 }{ (5^3)}\)

=> 20 + 4 + 0

=> 24

Answer B
User avatar
Abhishek009
User avatar
Board of Directors
Joined: 11 Jun 2011
Last visit: 18 Jul 2025
Posts: 5,934
Own Kudos:
5,327
 [1]
Given Kudos: 463
Status:QA & VA Forum Moderator
Location: India
GPA: 3.5
WE:Business Development (Commercial Banking)
Posts: 5,934
Kudos: 5,327
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AndreG
How many zeros does 100! end with?

A. 20
B. 24
C. 25
D. 30
E. 32
\(\frac{100}{5}=20\)

Or, \(\frac{20}{5}=4\)

Total no of zeros is 24 , Answer must be (B)
User avatar
JeanetteMW
Joined: 27 Jun 2020
Last visit: 02 Nov 2025
Posts: 5
Own Kudos:
Given Kudos: 18
Posts: 5
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Answer choices makes no sense:

100! = 93,326,215,443,944,200,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

That is a load of zeros.

and 32! = 263,130,836,933,694,000,000,000,000,000,000,000
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts