Last visit was: 14 Dec 2024, 04:37 It is currently 14 Dec 2024, 04:37
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
RMD007
Joined: 03 Jul 2016
Last visit: 08 Jun 2019
Posts: 237
Own Kudos:
170
 []
Given Kudos: 80
Status:Countdown Begins...
Location: India
Concentration: Technology, Strategy
Schools: IIMB
GMAT 1: 580 Q48 V22
GPA: 3.7
WE:Information Technology (Consulting)
Products:
Schools: IIMB
GMAT 1: 580 Q48 V22
Posts: 237
Kudos: 170
 []
2
Kudos
Add Kudos
12
Bookmarks
Bookmark this Post
User avatar
niks18
User avatar
Retired Moderator
Joined: 25 Feb 2013
Last visit: 30 Jun 2021
Posts: 887
Own Kudos:
1,620
 []
Given Kudos: 54
Location: India
GPA: 3.82
Products:
Posts: 887
Kudos: 1,620
 []
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,316
Own Kudos:
36,319
 []
Given Kudos: 9,464
Products:
Expert reply
Posts: 5,316
Kudos: 36,319
 []
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
vitorcbarbieri
Joined: 03 Sep 2017
Last visit: 14 Jun 2019
Posts: 13
Own Kudos:
7
 []
Given Kudos: 24
Location: Brazil
GMAT 1: 730 Q49 V41
Products:
GMAT 1: 730 Q49 V41
Posts: 13
Kudos: 7
 []
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I did it in a more ''muscle'' way:

For the remainder to be 3 when divided by 16, must follow the equation:
3+16*n (n is integer)
n=0 -> 3
n=1 -> 19

Whats in biggest n, that the result of the equation is smaller than 1.000 (inclusive)?
Let the +3 aside for a bit..

16*10 = 160
16*20 = 320
16*40 = 640
16*60 = 640+320 = 960
16*61 = 976
16*62 = 992 (enough) + 3 = 995 (last number that follows the equation)

Answer: 62 + (n = 0) option = 63 possibilities

What you guys think?
User avatar
SaGa
Joined: 15 Mar 2017
Last visit: 28 May 2018
Posts: 27
Own Kudos:
227
 []
Given Kudos: 39
Location: India
Concentration: International Business, Strategy
GMAT 1: 720 Q50 V37
GPA: 4
GMAT 1: 720 Q50 V37
Posts: 27
Kudos: 227
 []
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
RMD007
How many integers from 0 to 1000 inclusive, have a remainder of 3 when divided by 16?

A. 61

B. 62

C. 63

D. 64

E. 65

Source: Self-made.

a = 3
an = 995

a + (n-1)d = an

3 + (n-1)x16 = 995

n = 63
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Dec 2024
Posts: 97,874
Own Kudos:
685,727
 []
Given Kudos: 88,270
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,874
Kudos: 685,727
 []
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
RMD007
How many integers from 0 to 1000 inclusive, have a remainder of 3 when divided by 16?

A. 61

B. 62

C. 63

D. 64

E. 65

Source: Self-made.

\(x = 16q + 3\)

\(0 \leq 16q + 3 \leq 1000\)

\(-3 \leq 16q \leq 997\)

\(-0.something \leq q \leq 62.something\)

q can take 63 integer values from 0 to 62 inclusive, thus x can also take 63 values.

Answer: C.
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,316
Own Kudos:
Given Kudos: 9,464
Products:
Expert reply
Posts: 5,316
Kudos: 36,319
Kudos
Add Kudos
Bookmarks
Bookmark this Post
vitorcbarbieri
I did it in a more ''muscle'' way:

For the remainder to be 3 when divided by 16, must follow the equation:
3+16*n (n is integer)
n=0 -> 3
n=1 -> 19

Whats in biggest n, that the result of the equation is smaller than 1.000 (inclusive)?
Let the +3 aside for a bit..

16*10 = 160
16*20 = 320
16*40 = 640
16*60 = 640+320 = 960
16*61 = 976
16*62 = 992 (enough) + 3 = 995 (last number that follows the equation)

Answer: 62 + (n = 0) option = 63 possibilities

What you guys think?
vitorcbarbieri

I think you found an approach with a smart pattern that works! It is a bit similar to mine, above.

I do not think your approach is "brute force" except maybe in one place where, had the upper limit of the range been an ugly number, you might have been calculating for awhile.

I didn't use round multiples of 10, times 16, to "multiply up" to the highest term. Maybe that is faster. It is certainly smart. Next time, if numbers aren't bad, I'll try your way. Just one tiny cautionary thought . . .

If you were to get some heinous number, say 173,619, as the last of the range, you might be multiplying for awhile, even if you used thousands, hundreds, and then tens. In a case such as that, to find multiples, you may want to try the reverse: divide the heinous number by the multiple to get the greatest number that "n" in 16n can be.

In other words: to find the highest multiple of 16 close to but less than 1,000: divide 1000 by 16 to get 62.xx.

It's 62.5, but I didn't calculate that. The second I saw I had a decimal coming, I just noted the .xx. Then I took the integer, 62, and multiplied by 16 to give me that highest value, 992. Added 3. Done on that front (very similar to your conclusion). If this cautionary thought seems dumb, of course, ignore it.

In any event, nice work! Glad you posted. Kudos.
User avatar
mohshu
Joined: 21 Mar 2016
Last visit: 26 Dec 2019
Posts: 448
Own Kudos:
Given Kudos: 103
Products:
Posts: 448
Kudos: 127
Kudos
Add Kudos
Bookmarks
Bookmark this Post
SaGa
RMD007
How many integers from 0 to 1000 inclusive, have a remainder of 3 when divided by 16?

A. 61

B. 62

C. 63

D. 64

E. 65

Source: Self-made.

a = 3
an = 995

a + (n-1)d = an

3 + (n-1)x16 = 995

n = 63

This approach is understandable,,,, thanks,,,
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 13 Dec 2024
Posts: 19,869
Own Kudos:
24,292
 []
Given Kudos: 288
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 19,869
Kudos: 24,292
 []
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
RMD007
How many integers from 0 to 1000 inclusive, have a remainder of 3 when divided by 16?

A. 61

B. 62

C. 63

D. 64

E. 65


The first number from 0 to 1000 inclusive that has a remainder of 3 when divided by 16 is 3, and the last number is 995.

Thus, there are (995 - 3)/16 + 1 = 63 integers from 0 to 1000 inclusive that have a remainder of 3 when divided by 16.

Answer: C
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 35,818
Own Kudos:
Posts: 35,818
Kudos: 930
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderator:
Math Expert
97874 posts