GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 19 Oct 2019, 23:28

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If 1/3 of the total number of marbles in the three bags listed in the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58445
If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 17 Jun 2016, 05:19
5
1
67
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

67% (02:43) correct 33% (03:02) wrong based on 1544 sessions

HideShow timer Statistics

Most Helpful Expert Reply
Target Test Prep Representative
User avatar
D
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8109
Location: United States (CA)
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 19 Dec 2017, 07:42
4
1
Bunuel wrote:
Image
If 1/3 of the total number of marbles in the three bags listed in the table above are blue, how many marbles are there in bag Q?

A) 5
B) 9
C) 12
D) 23
E) 46

Attachment:
2016-06-17_1618.png


We are given a table with the following information:

Bag P has 37 marbles and 10.8% of those marbles are blue. So there are 0.108(37) = 3.996, or 4, blue marbles in bag P.

Bag Q has X marble and 66.7% of those marbles are blue. Recall that the fraction 2/3 is approximately 66.7%, so there are (2/3)X blue marbles in bag Q.

Bag R has 32 marbles and 50% of those marbles are blue. So, there are 0.5(32) = 16 blue marbles in bag R.

We are also given that 1/3 of the total marbles in the 3 bags are blue. Thus, we can create the following equation:

1/3(37 + X + 32) = 4 + (2/3)X + 16

Multiplying the equation by 3, we have:

37 + X + 32 = 12 + 2X + 48

X + 69 = 2X + 60

X = 9

There are 9 marbles in bag Q.

Answer: B
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Most Helpful Community Reply
Manager
Manager
User avatar
Joined: 19 Dec 2015
Posts: 108
Location: United States
GMAT 1: 720 Q50 V38
GPA: 3.8
WE: Information Technology (Computer Software)
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 17 Jun 2016, 13:56
26
10
Bag P : 10.8% of 37 = 4
Bag Q : 66.7% of x = 2x/3
Bag R : 50% of 32 = 16.

Given, 4 + 2x/3 + 16 = 1/3 ( 37+x+32) => x = 9. Hence B.
General Discussion
Current Student
avatar
B
Joined: 08 Jan 2015
Posts: 74
GMAT ToolKit User
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 20 Aug 2016, 09:37
FacelessMan wrote:
Bag P : 10.8% of 37 = 4
Bag Q : 66.7% of x = 2x/3
Bag R : 50% of 32 = 16.

Given, 4 + 2x/3 + 16 = 1/3 ( 37+x+32) => x = 9. Hence B.


I have approximated 10.8% as 1/9, which is 11.1%
Current Student
avatar
B
Joined: 20 Jul 2014
Posts: 19
Location: India
GMAT 1: 710 Q46 V41
GPA: 3.16
If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 21 Aug 2016, 00:17
7
This might look like it contains hard calculations, but the thing to notice here is that the number of balls are always going to be integers.

So, 10.8% of 37 will be 4, we know 50% of x is 32 and we can keep 66.7% as 2/3rds. Once you do this, the question can be solved to arrive at ~9 quickly.
Manager
Manager
avatar
Joined: 17 Sep 2015
Posts: 84
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 21 Aug 2016, 05:38
5
4
If 1/3 of the total number of marbles in the three bags listed in the table above are blue, how many marbles are there in bag Q?

A) 5
B) 9
C) 12
D) 23
E) 46

Total has to be multiple of 3 since 1/3rd of them are blue and 1st and 3rd bag have total 69 marbles so (69 + x)/3 is blue total hence x also must be divisible by 3

hence narrow down to B) 9 or C) 12

66.67 % is nothing but 2/3 rd (ie 33.33 * 2 ie 1/3 * 2)

so if x is 9 then blue marbles in 2nd bag is 6 (2/3rd of 9 = 6)
or if x is 12 then blue marbles in 3rd bag is 8 (2/3rd of 12 = 8)

do that math : if x = 9 then total = 69 + 9 = 78
and total blue = 16 + 4 + 6 = 26
26/78 = 1/3 -----> fits (most likely that B is the ans)

cross check
if x = 12 then total = 81
total blue = 28
28/81 != 1/3 hence (B)
_________________
You have to dig deep and find out what it takes to reshuffle the cards life dealt you
Current Student
avatar
B
Joined: 29 Nov 2016
Posts: 14
Location: United States (TX)
GMAT 1: 690 Q47 V38
GPA: 3.58
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 13 Jun 2017, 04:45
manlog wrote:
I have approximated 10.8% as 1/9, which is 11.1%


10.8% of 37 -> 10% of 37 = 3.7.

3.7 is a little low and the number of balls must be an integer; can round up to 4.
Director
Director
User avatar
D
Affiliations: IIT Dhanbad
Joined: 13 Mar 2017
Posts: 728
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 22 Apr 2018, 10:44
Bunuel wrote:
Image
If 1/3 of the total number of marbles in the three bags listed in the table above are blue, how many marbles are there in bag Q?

A) 5
B) 9
C) 12
D) 23
E) 46

Attachment:
2016-06-17_1618.png

No. of blue marbles in each bag is
Bag P: 10.8% of 37 = 4
Bag Q:66.7% of X = 2/3 X
Bag R: 50% of 32 = 16

Total Blue marbles = 4 + 2/3 X + 16 = 20 + 2/3 X

Also Total marbles count = 37 + X + 32 = 69 + X

So, 1/3 (69+ X ) = 20 + 2/3 X
23 + 1/3 X = 20 + 2/3 X
1/3 X = 3
X = 9

Answer B
_________________
CAT 2017 (98.95) & 2018 (98.91) : 99th percentiler
UPSC Aspirants : Get my app UPSC Important News Reader from Play store.

MBA Social Network : WebMaggu


Appreciate by Clicking +1 Kudos ( Lets be more generous friends.)



What I believe is : "Nothing is Impossible, Even Impossible says I'm Possible" : "Stay Hungry, Stay Foolish".
VP
VP
User avatar
D
Joined: 09 Mar 2016
Posts: 1230
If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post Updated on: 29 Apr 2018, 03:17
many thanks generis and niks18

yeah working with fractions is easier , also good to know that \(\frac{2}{3}\)= 66% :)

\(4+16+\frac{2}{3}x= \frac{1}{3} (37+32+x)\)

\(20+\frac{2}{3}x = \frac{1}{3}x+23\)

\(\frac{2}{3}x-\frac{1}{3}x = 3\)

\(\frac{1}{3}x =3\)

\(x =9\)


have a great weekend :-)

Originally posted by dave13 on 28 Apr 2018, 06:41.
Last edited by dave13 on 29 Apr 2018, 03:17, edited 1 time in total.
Retired Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1178
Location: India
GPA: 3.82
GMAT ToolKit User Reviews Badge
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 28 Apr 2018, 07:20
dave13 wrote:
Bunuel wrote:
Image
If 1/3 of the total number of marbles in the three bags listed in the table above are blue, how many marbles are there in bag Q?

A) 5
B) 9
C) 12
D) 23
E) 46

Attachment:
2016-06-17_1618.png


generis, niks18, pushpitkc, hello :)

here is my unique solution :) two solutions one is incorrect and next one seems more accurate :) unfortunately i cant solve 700 level q under 2 min, takes me more time befire i figure out how the problem can be approached :)

\(4+16+0.67x= \frac{1}{3} (37+32+x)\)

\(20+0.67x =\frac{1}{3}x+23\)

\(20-23 = \frac{1}{3}x-\frac{67}{100}\)

\(-3 = \frac{33}{300}x\)

\(-3 = \frac{11}{100}x\)

the above solution is incorrect, i kept 1/3 as fraction, so i wonder what did i do wrong

in the next solution I converted 1/3 to decimal = 0.33%

\(4+16+0.67x=0.33 (37+32+x)\)

\(20+0.67x = 0.33x+23\)

\(0.67x - 0.33x = 23-20\)

\(3 = 0.34x\)

\(x = 8.8\)

round to the tenth \(8.8\) and get \(9\) :)

have a great weekend :-)


hi dave13

Pls check the calculations in the highlighted part above. How come 37+32 become 23? and when you are opening the bracket then each element of the bracket has to be multiplied by 1/3 or 0.33
VP
VP
User avatar
D
Joined: 09 Mar 2016
Posts: 1230
If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 28 Apr 2018, 07:30
niks18 wrote:
dave13 wrote:
Bunuel wrote:
Image
If 1/3 of the total number of marbles in the three bags listed in the table above are blue, how many marbles are there in bag Q?

A) 5
B) 9
C) 12
D) 23
E) 46

Attachment:
2016-06-17_1618.png


generis, niks18, pushpitkc, hello :)

here is my unique solution :) two solutions one is incorrect and next one seems more accurate :) unfortunately i cant solve 700 level q under 2 min, takes me more time befire i figure out how the problem can be approached :)

\(4+16+0.67x= \frac{1}{3} (37+32+x)\)

\(20+0.67x =\frac{1}{3}x+23\)

\(20-23 = \frac{1}{3}x-\frac{67}{100}\)

\(-3 = \frac{33}{300}x\)

\(-3 = \frac{11}{100}x\)

the above solution is incorrect, i kept 1/3 as fraction, so i wonder what did i do wrong

in the next solution I converted 1/3 to decimal = 0.33%

\(4+16+0.67x=0.33 (37+32+x)\)

\(20+0.67x = 0.33x+23\)

\(0.67x - 0.33x = 23-20\)

\(3 = 0.34x\)

\(x = 8.8\)

round to the tenth \(8.8\) and get \(9\) :)

have a great weekend :-)


hi dave13

Pls check the calculations in the highlighted part above. How come 37+32 become 23? and when you are opening the bracket then each element of the bracket has to be multiplied by 1/3 or 0.33


niks18, hello there :)

to answer your question - How come 37+32 become 23?

\(37+32 =69\) so\(\frac{1}{3}*69 =23\) so I get \(23+0,33x\) :)

\(20+0.67x = 0.33x+23\)

isnt it correct ? :?
Senior SC Moderator
avatar
V
Joined: 22 May 2016
Posts: 3560
If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 28 Apr 2018, 07:34
1
dave13 wrote:
Bunuel wrote:
Image
If 1/3 of the total number of marbles in the three bags listed in the table above are blue, how many marbles are there in bag Q?

A) 5
B) 9
C) 12
D) 23
E) 46

Attachment:
2016-06-17_1618.png

generis, niks18, pushpitkc, hello :)

here is my unique solution :) two solutions one is incorrect and next one seems more accurate :) unfortunately i cant solve 700 level q under 2 min, takes me more time befire i figure out how the problem can be approached :)

\(4+16+0.67x= \frac{1}{3} (37+32+x)\)

\(20+0.67x = \frac{1}{3}x+23\)

\(20-23 = \frac{1}{3}x-\frac{67}{100}\)

\(-3 = \frac{33}{300}x\)

\(-3 = \frac{11}{100}x\)

the above solution is incorrect, i kept 1/3 as fraction, so i wonder what did i do wrong


dave13
The equation is correct. The arithmetic is off.

(EDIT As niks18 points out), check your math here:
Quote:
\(20-23 = \frac{1}{3}x-\frac{67}{100}\)

\(-3 = \frac{33}{300}x\)

Try using \(\frac{67}{100}=\frac{2}{3}\)

\(\frac{1}{3}x - \frac{2}{3}x\) = ????

Calculate again and see what you get.

Tip: use fractions with fractions and decimals with decimals. IMO fractions are easier.

Another way to think about setup and solving of the equation . . . (I do not know whether either suggestion will be easier for you - they're just possibilities)

After you replace \(.67\) with \(\frac{2}{3}\)

Change the setup and cross multiply.

(1) Setup: If blue marbles equal \(\frac{1}{3}\) of three bags' total marbles:
\(\frac{Blue}{Total}=\frac{1}{3}\)
\(\frac{16+4+\frac{2}{3}x}{37+32+x}=\frac{1}{3}\)

(2) Solve. Cross multiply.

Just one arithmetic mistake, in other words.

Your second solution is correct. If you use decimals (IMO, harder here!) what you calculated is correct.

Hope that helps.
_________________
SC Butler has resumed! Get two SC questions to practice, whose links you can find by date, here.


Instructions for living a life. Pay attention. Be astonished. Tell about it. -- Mary Oliver
Retired Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1178
Location: India
GPA: 3.82
GMAT ToolKit User Reviews Badge
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 28 Apr 2018, 07:37
1
dave13 wrote:
niks18 wrote:
dave13 wrote:
generis, niks18, pushpitkc, hello :)

here is my unique solution :) two solutions one is incorrect and next one seems more accurate :) unfortunately i cant solve 700 level q under 2 min, takes me more time befire i figure out how the problem can be approached :)

\(4+16+0.67x= \frac{1}{3} (37+32+x)\)

\(20+0.67x =\frac{1}{3}x+23\)

\(20-23 = \frac{1}{3}x-\frac{67}{100}\)

\(-3 = \frac{33}{300}x\)

\(-3 = \frac{11}{100}x\)


the above solution is incorrect, i kept 1/3 as fraction, so i wonder what did i do wrong

in the next solution I converted 1/3 to decimal = 0.33%

\(4+16+0.67x=0.33 (37+32+x)\)

\(20+0.67x = 0.33x+23\)

\(0.67x - 0.33x = 23-20\)

\(3 = 0.34x\)

\(x = 8.8\)

round to the tenth \(8.8\) and get \(9\) :)

have a great weekend :-)


hi dave13

Pls check the calculations in the highlighted part above. How come 37+32 become 23? and when you are opening the bracket then each element of the bracket has to be multiplied by 1/3 or 0.33


niks18, hello there :)

to answer your question - How come 37+32 become 23?

\(37+32 =69\) so\(\frac{1}{3}*69 =23\) so I get \(23+0,33x\) :)

\(20+0.67x = 0.33x+23\)

isnt it correct ? :?


hi dave13
yes its correct. :thumbup: my mistake I got confused here. So in your method 1 the mistake is in highlighted part above. kindly check your calculation of 1/3x-67x/100. Rest is ok
Intern
Intern
User avatar
B
Joined: 15 Sep 2018
Posts: 31
If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 20 Sep 2018, 20:24
If we let \(x\) be the number of marbles in Bag \(Q\),

To start, the total of number of marbles in the three bags is \((37+ 32+ x) = 69 + x\) marbles.

Next, we need to find the number of blue marbles in the 3 bags. To do so, we multiply each percentage by the number of marbles in each bag (converting each percentage to decimal as needed):

The number of blue marbles present in each bag would be:

Bag P: \(0.108 \times 37 =3.996\) or \(4\) since we want the nearest whole number marbles
Bag R:\(0.50 \times 32 =\)\(16\) marbles
Bag Q:\(0.667(x) = 0.667x\) marbles or \(\frac{2x}{3}\) marbles (Note that 0.667 is equivalent to 2/3 in fractions)

The prompt states that \(\frac{1}{3}\) of the total marbles equals the total number of blue marbles. We can now form the equation below.

1/3 x Total Number of Marbles = Total Number of Blue Marbles

\(1/3 (69 + x) = (4 + 16 + 2x/3)\)
Distribute \(\frac{1}{3}\) into the parenthesis,
\(23 + \frac{x}{3} = 20 + \frac{2x}{3}\)
\(23 – 20= \frac{2x}{3} – \frac{x}{3}\)
\(3 = \frac{x}{3}\)
\(x = 3(3) = 9\)

Hence, there are 9 marbles in Bag Q. The final answer is .
Intern
Intern
avatar
B
Joined: 16 Jan 2017
Posts: 2
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 05 Jul 2019, 01:31
Just want to clarify, should one always round up to the nearest integer if the variable is an actual object?

My error in solving this problem was assuming it was 3 marbles in Bag P, instead of 4. Due to the fact that, I didnt see it possible for there to be .994 of a marble, just like how in other problems 1.5 people is equivalent to just 1 person, as you cant have half a person.

Thanks!
Intern
Intern
avatar
B
Joined: 21 Oct 2015
Posts: 7
Location: Singapore
Schools: CBS
GMAT 1: 780 Q51 V47
GPA: 3.2
WE: Consulting (Non-Profit and Government)
Re: If 1/3 of the total number of marbles in the three bags listed in the  [#permalink]

Show Tags

New post 25 Sep 2019, 21:03
There are 2 ways to do this question quickly.

1. is detailed by several other ppl.
10.8% of 37 = 4
66.7% of x = 2x/3
50% of 31 = 16

4 + 16 + 2x/3 = 1/3(32 + 37 + x)
20 + 2x/3 = 1/3(69 +x) => x = 9

2. Alternatively, use the answer choices and information given. Since Bag Q has 66.7% (2/3) blue marbles, and you can't really have fractions of marbles, the answer must be a multiple of 3: either (B) 9 or (C) 12.

Plug in the answers to the question.
9: 10.8%(37) + 66.7%(9) + 50%(32) = 26 AND 37 + 9 + 32 = 78 => WORKS

12: 10.8%(37) + 66.7%(12) + 50%(32) = 28 AND 37 + 12 + 32 = 81 => DOESN'T WORK
GMAT Club Bot
Re: If 1/3 of the total number of marbles in the three bags listed in the   [#permalink] 25 Sep 2019, 21:03
Display posts from previous: Sort by

If 1/3 of the total number of marbles in the three bags listed in the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne