GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 24 Jan 2020, 09:14 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # If (a + 1/a)^2 = 3, find the value of a^3 + 1/a^3

Author Message
TAGS:

### Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 60645
If (a + 1/a)^2 = 3, find the value of a^3 + 1/a^3  [#permalink]

### Show Tags 00:00

Difficulty:   55% (hard)

Question Stats: 58% (02:25) correct 42% (02:09) wrong based on 45 sessions

### HideShow timer Statistics

If $$(a +\frac{1}{a})^2=3$$, find the value of $$a^3 + \frac{1}{a^3}$$

A. 0

B. 1

C. $$\sqrt{3}$$

D. $$2+\sqrt{3}$$

E. Not enough information

Are You Up For the Challenge: 700 Level Questions

_________________
Manager  B
Joined: 03 Nov 2019
Posts: 54
Re: If (a + 1/a)^2 = 3, find the value of a^3 + 1/a^3  [#permalink]

### Show Tags

1
using (a + b)^3 = a^3 + b^3 + 3ab(a + b)

a^3 + b^3 = (a + b)^3 - 3ab(a + b)

Now substituting the values from question:
a^3+(1/a)^3= (a+1/a)^3-3*a*1/a(a+1/a)
=$$\sqrt{3}$$^3-3*$$\sqrt{3}$$
=3$$\sqrt{3}$$-3$$\sqrt{3}$$
=0

Intern  B
Joined: 26 Jun 2017
Posts: 21
Re: If (a + 1/a)^2 = 3, find the value of a^3 + 1/a^3  [#permalink]

### Show Tags

Given : $$(a+\frac{1}{a})^2 = 3$$

$$a+\frac{1}{a} = \sqrt{3}$$

$$(a+\frac{1}{a})^3$$ = 3$$\sqrt{3}$$

Lets just bother about LHS for now, Expanding LHS

$$a^3 + \frac{1}{a^3 }+ 3a^2\frac{1}{a} + 3a\frac{1}{a^2}$$

$$a^3 + \frac{1}{a^3 } + 3a + \frac{3}{a}$$

Taking 3 common,

$$a^3 + \frac{1}{a^3 } + 3(a + \frac{1}{a})$$

after substituting the value of $$a + \frac{1}{a }$$, the actual equation becomes:

$$a^3 + \frac{1}{a^3 } + 3\sqrt{3} = 3\sqrt{3}$$

$$a^3 + \frac{1}{a^3 } = 0$$

Target Test Prep Representative V
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 9126
Location: United States (CA)
Re: If (a + 1/a)^2 = 3, find the value of a^3 + 1/a^3  [#permalink]

### Show Tags

2
Bunuel wrote:
If $$(a +\frac{1}{a})^2=3$$, find the value of $$a^3 + \frac{1}{a^3}$$

A. 0

B. 1

C. $$\sqrt{3}$$

D. $$2+\sqrt{3}$$

E. Not enough information

Are You Up For the Challenge: 700 Level Questions

Since (a + 1/a)^2 = 3, a + 1/a = ±√3. Furthermore, since (a + 1/a)^2 = a^2 + 2a(1/a) + 1/a^2 = a^2 + 2 + 1/a^2 = 3, we see that a^2 + 1/a^2 = 1.

Now, if we multiply a + 1/a and a^2 + 1/a^2 (and assume that a + 1/a = √3), we have:

(a + 1/a)(a^2 + 1/a^2) = √3 x 1

a^3 + 1/a + a + 1/a^3 = √3

a^3 + √3 + 1/a^3 = √3

a^3 + 1/a^3 = 0

If a + 1/a = -√3, we have:

(a + 1/a)(a^2 + 1/a^2) = -√3 x 1

a^3 + 1/a + a + 1/a^3 = -√3

a^3 - √3 + 1/a^3 = -√3

a^3 + 1/a^3 = 0

We see that either way, a^3 + 1/a^3 = 0.

_________________

# Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button. Re: If (a + 1/a)^2 = 3, find the value of a^3 + 1/a^3   [#permalink] 09 Dec 2019, 18:55
Display posts from previous: Sort by

# If (a + 1/a)^2 = 3, find the value of a^3 + 1/a^3  