Last visit was: 18 Nov 2025, 23:52 It is currently 18 Nov 2025, 23:52
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,377
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,377
Kudos: 778,143
 [16]
2
Kudos
Add Kudos
14
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Ansh777
Joined: 03 Nov 2019
Last visit: 06 Jun 2023
Posts: 56
Own Kudos:
172
 [8]
Given Kudos: 129
Location: India
GMAT 1: 710 Q50 V36
1
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
General Discussion
avatar
RajKomanapalli
Joined: 26 Jun 2017
Last visit: 18 Jul 2020
Posts: 20
Own Kudos:
14
 [1]
Given Kudos: 15
Posts: 20
Kudos: 14
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 18 Nov 2025
Posts: 21,712
Own Kudos:
26,994
 [4]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,712
Kudos: 26,994
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
If \((a +\frac{1}{a})^2=3\), find the value of \(a^3 + \frac{1}{a^3}\)


A. 0

B. 1

C. \(\sqrt{3}\)

D. \(2+\sqrt{3}\)

E. Not enough information

Are You Up For the Challenge: 700 Level Questions

Since (a + 1/a)^2 = 3, a + 1/a = ±√3. Furthermore, since (a + 1/a)^2 = a^2 + 2a(1/a) + 1/a^2 = a^2 + 2 + 1/a^2 = 3, we see that a^2 + 1/a^2 = 1.

Now, if we multiply a + 1/a and a^2 + 1/a^2 (and assume that a + 1/a = √3), we have:

(a + 1/a)(a^2 + 1/a^2) = √3 x 1

a^3 + 1/a + a + 1/a^3 = √3

a^3 + √3 + 1/a^3 = √3

a^3 + 1/a^3 = 0

If a + 1/a = -√3, we have:

(a + 1/a)(a^2 + 1/a^2) = -√3 x 1

a^3 + 1/a + a + 1/a^3 = -√3

a^3 - √3 + 1/a^3 = -√3

a^3 + 1/a^3 = 0

We see that either way, a^3 + 1/a^3 = 0.

Answer: A
User avatar
GmatPoint
Joined: 02 Jan 2022
Last visit: 13 Oct 2022
Posts: 247
Own Kudos:
Given Kudos: 3
GMAT 1: 760 Q50 V42
GMAT 1: 760 Q50 V42
Posts: 247
Kudos: 137
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Since :

\(\left(a+\frac{1}{a}\right)^2\ =\ 3,\ \left(a+\frac{1}{a}\right)\ =\ \left(\sqrt{\ 3}or\ -\sqrt{\ 3}\right)\)
Considering \(\left(a+\frac{1}{a}\right)\ =\ \left(\sqrt{\ 3}\right)\)
\(\left(a+\frac{1}{a}\right)^3\ =\ a^3+\frac{1}{a^3}+3\cdot\left(\cdot a+\frac{1}{a}\right)\)
Hence :
\(3\sqrt{\ 3}\ =\ a^3\ +\ \frac{1}{a^3}+\ 3\sqrt{\ 3}\)
\(\ a^3\ +\ \frac{1}{a^3}=\ 0\)
Similarly considering : \(a+\ \frac{1}{a}=\ -\sqrt{\ 3}\)
\(\left(a+\ \frac{1}{a}\right)^3=\ -3\sqrt{\ 3}\)
=\( \ -3\sqrt{\ 3}=\ a^3+\ \frac{1}{a^3}\ -\ 3\sqrt{\ 3}\)
\(\ a^3+\ \frac{1}{a^3}\ =\ 0\)



User avatar
Crytiocanalyst
Joined: 16 Jun 2021
Last visit: 27 May 2023
Posts: 950
Own Kudos:
Given Kudos: 309
Posts: 950
Kudos: 208
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
If \((a +\frac{1}{a})^2=3\), find the value of \(a^3 + \frac{1}{a^3}\)




Are You Up For the Challenge: 700 Level Questions


(a + 1/a)(a^2 + 1/a^2) = √3 x 1

a^3 + 1/a + a + 1/a^3 = √3

a^3 + √3 + 1/a^3 = √3

a^3 + 1/a^3 = 0

If a + 1/a = -√3, we have:

(a + 1/a)(a^2 + 1/a^2) = -√3 x 1

a^3 + 1/a + a + 1/a^3 = -√3

a^3 - √3 + 1/a^3 = -√3

a^3 + 1/a^3 = 0

We see that either way, a^3 + 1/a^3 = 0

Therefore IMO A
User avatar
Fdambro294
Joined: 10 Jul 2019
Last visit: 20 Aug 2025
Posts: 1,350
Own Kudos:
741
 [1]
Given Kudos: 1,656
Posts: 1,350
Kudos: 741
 [1]
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
If \((a +\frac{1}{a})^2=3\), find the value of \(a^3 + \frac{1}{a^3}\)


A. 0

B. 1

C. \(\sqrt{3}\)

D. \(2+\sqrt{3}\)

E. Not enough information

Are You Up For the Challenge: 700 Level Questions

(Step 1)

Take the square root of a variable expression squared

|a + (1/a)| = sqrt(3)

a + (1/a) = +sqrt(3) —or— (-)sqrt(3)

(Step 2)

Take the expression (a) + (1/a) and CUBE it

(a + 1/a)^3 = (a)^3 + (1/a)^3 + (3)(a)(1/a) (a + 1/a)


The term: (3)(a)(1/a) = (3)(a/a) = (3)(1) = 3

And you can substitute each possible value of (a + 1/a)
Positive square root of 3
Or
Negative square root of 3

(+sqrt(3))^3 = (a)^3 + 1/a^3 + (3) (+sqrt(3))

Square root of 3 raised to the 3rd power is equal to = (3) (+sqrt(3))

So you end up with

(a)^3 + 1/a^3 = 0

Same result if you put in (-)sqrt(3)

Answer

0

Posted from my mobile device
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,698
 [1]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,698
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
If \((a +\frac{1}{a})^2=3\), find the value of \(a^3 + \frac{1}{a^3}\)


A. 0

B. 1

C. \(\sqrt{3}\)

D. \(2+\sqrt{3}\)

E. Not enough information

The best way would be to use \((a + b)^3 = a^3 + b^3 + 3ab(a + b)\)

\((a +\frac{1}{a})^3 = a^3 +\frac{1}{a}^3 + 3a*\frac{1}{a}(a +\frac{1}{a})\)

\((a +\frac{1}{a})^2*(a+\frac{1}{a})= a^3 +\frac{1}{a}^3 + 3a*\frac{1}{a}(a +\frac{1}{a})\)

\(3(a+\frac{1}{a})= a^3 +\frac{1}{a}^3 + 3*1*(a +\frac{1}{a})\)

\(a^3+\frac{1}{a^3}=0\)

A
However, what would be a?
a can not be 0 because 1/a will be undefined.
If a<0, then \(a^3+\frac{1}{a^3}<0\).
If a>0, then \(a^3+\frac{1}{a^3}>0\).
So, only way \(a^3+\frac{1}{a^3}=0\) is when a is some imaginary number and we do not deal with imaginary number in GMAT.
User avatar
Regor60
Joined: 21 Nov 2021
Last visit: 17 Nov 2025
Posts: 528
Own Kudos:
Given Kudos: 459
Posts: 528
Kudos: 383
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Square roots. Ewww.

Expand left side:

a^2+2+1/a^2 = 3 and:

a^2+1/a^2 =1

Now:

(a^2+1/a^2)(a+1/a) =

(a^3+1/a^3)+(a+1/a)

Substitute from above:

(1)(a+1/a) =

(a^3+1/a^3)+(a+1/a)

Or

a^3+1/a^3 = 0

Posted from my mobile device
User avatar
ZIX
Joined: 30 Sep 2023
Last visit: 18 Nov 2025
Posts: 91
Own Kudos:
Given Kudos: 519
Posts: 91
Kudos: 144
Kudos
Add Kudos
Bookmarks
Bookmark this Post
­Here's an easier approach:

\((a+\frac{1}{a})^2 = 3\)

With this we get two equations: 

\(a + \frac{1}{a }= \sqrt{3}\) --- (1) 
\(a^2 + \frac{1}{a^2} = 1\) --- (2)

Multiply eq. 1 and 2

\((a + \frac{1}{a})(a^2 + \frac{1}{a^2}) = \sqrt{3}\)
\(a^3 + a + \frac{1}{a} + \frac{1}{a^3} = \sqrt{3}\)
\(a^3 + \frac{1}{a^3} + \sqrt{3} = \sqrt{3}\)
\(a^3 + \frac{1}{a^3} = 0\)­
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,582
Own Kudos:
Posts: 38,582
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105377 posts
Tuck School Moderator
805 posts