enigma123
If a car traveled from Townsend to Smallville at an
average speed of 40 mph and then returned to Townsend later that evening, what was the
average speed for the entire trip?
(1) The trip from Townsend to Smallville took 50% longer than the trip from Smallville to Townsend.
(2) The distance from Townsend to Smallville is 165 miles.
How can the answer be A folks?
A couple of basics:
1.
Average Speed = Total Distance/ Total
Time2.
Average Speed = Weighted
Average of different speeds where '
time taken' is the weight
3. If equal distances (say d) are traveled at different speeds, a and b,
average speed = 2d/[d/a + d/b] = 2ab/(a+b)
In this case,
average speed is independent of 'd', the distance.
4. If speeds a and b are maintained for equal
time intervals, say t,
average speed = (at+bt)/2t = (a+b)/2
In this case,
average speed is independent of 't', the
time interval.
Given: Car travels equal distances.
Speed in first case is 40 mph. We need the
speed in the second case to get the
average speed (given by 2*40*b/(40+b))
(1) Ratio of
time in the two cases
T to S: S to T= 3:2
Then ratio of
speed in the two cases = 2:3
We know the
speed from T to S = 40
Then
speed from S to T must be 60
Since we have the value of b (= 60) i.e. the
speed while coming back, we can easily find the
average speed..
Sufficient.
(2) As we discussed, distance traveled doesn't affect
average speed in this case. Not sufficient
Answer (A)
TSD Basics are discussed here:
https://youtu.be/7ASEIvxYPCM