Last visit was: 19 Nov 2025, 12:16 It is currently 19 Nov 2025, 12:16
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
fozzzy
Joined: 29 Nov 2012
Last visit: 17 May 2015
Posts: 574
Own Kudos:
6,801
 [365]
Given Kudos: 543
Posts: 574
Kudos: 6,801
 [365]
24
Kudos
Add Kudos
340
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,337
 [148]
66
Kudos
Add Kudos
82
Bookmarks
Bookmark this Post
User avatar
MacFauz
Joined: 02 Jul 2012
Last visit: 19 Mar 2022
Posts: 996
Own Kudos:
3,360
 [17]
Given Kudos: 116
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE:Engineering (Energy)
15
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
General Discussion
User avatar
Marcab
Joined: 03 Feb 2011
Last visit: 22 Jan 2021
Posts: 850
Own Kudos:
4,853
 [11]
Given Kudos: 221
Status:Retaking after 7 years
Location: United States (NY)
Concentration: Finance, Economics
GMAT 1: 720 Q49 V39
GPA: 3.75
GMAT 1: 720 Q49 V39
Posts: 850
Kudos: 4,853
 [11]
6
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
fozzzy
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8

The numbers are \(1/43 + 1/44+ 1/45 + 1/46 + 1/47 + 1/48\).
The easiest method is to find smart numbers.
If you consider each of the numbers as \(1/42\), then there sum will be \(6/42\) or \(1/7\). Remember that since we chose a higher number than those given, hence the actual sum will be smaller than \(1/7\).
Now consider each of the numbers \(1/48\). Then in such case, the sum will be \(6/48\) or \(1/8\). Remember that since we chose a smaller number than those given, hence the actual sum will be greater than \(1/8\).
Therefore the sum lies between \(1/7\) and \(1/8\). Hence among teh answer choices, the sum is closest to \(1/8\).
+1C
User avatar
egmat
User avatar
e-GMAT Representative
Joined: 02 Nov 2011
Last visit: 19 Nov 2025
Posts: 5,108
Own Kudos:
32,887
 [14]
Given Kudos: 700
GMAT Date: 08-19-2020
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 5,108
Kudos: 32,887
 [14]
6
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
fozzzy
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8

Hi,

Well all other approaches are correct. Here is one more. A little less calculation intensive.

From 1/43 to 1/48, there are 6 #.

=> We can infer that sum of 6 # of 1/40s > Sum of (1/43+/1/44+......+1/48) > Sum of 6 # of 1/50s

=>So, 6/40 > Sum of (1/43+/1/44+......+1/48) > 6/50

=> 1/6.66 > Sum of (1/43+/1/44+......+1/48) > 1/8.33

=> 1/6.66 > 1/ (6.66< Denominator < 8.33) > 1/8.33

Only option available is C. Answer is 1/8.

-Shalabh Jain
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 846
Own Kudos:
5,145
 [10]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 846
Kudos: 5,145
 [10]
9
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
What is the sum of \(\frac{1}{43}+ ... +\frac{1}{48}\)?

\(\frac{1}{43}(1+\frac{43}{44}+\frac{43}{45}+\frac{43}{46}+\frac{43}{47}+\frac{43}{48})\)
we can rewrite as: \(\frac{1}{43}(1+1+1+1+1+1)=\frac{6}{43}\)

6/43 is something more than 7, so is colse to 8
\(\frac{6}{43}=(almost)\frac{1}{8}\)
C
User avatar
danzig
Joined: 11 Aug 2012
Last visit: 07 Nov 2014
Posts: 103
Own Kudos:
Given Kudos: 16
Posts: 103
Kudos: 376
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
fozzzy
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8

Given that \(K=\frac{1}{43}+\frac{1}{44}+\frac{1}{45}+\frac{1}{46}+\frac{1}{47}+\frac{1}{48}\). Notice that 1/43 is the larges term and 1/48 is the smallest term.

If all 6 terms were equal to 1/43, then the sum would be 6/43=~1/7, but since actual sum is less than that, then we have that K<1/7.

If all 6 terms were equal to 1/48, then the sum would be 6/48=1/8, but since actual sum is more than that, then we have that K>1/8.

Therefore, 1/8<K<1/7. So, K must be closer to 1/8 than it is to 1/6.

Answer: C.

Similar question to practice from OG: m-is-the-sum-of-the-reciprocals-of-the-consecutive-integers-143703.html

Hope it helps.


Bunuel, I understand your method. However, how can we know that the distance between k and 1/8 is shorter than the distance between k and 1/6. For example, if k were almost 1/7, we would have to calculate the distance between 1/8 and 1/7 and also the distance between 1/7 and 1/6.
I make this comment because the GMAT Prep explains that point, but it does that in a complex way.
Thanks!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,337
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,337
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
danzig
Bunuel
fozzzy
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8

Given that \(K=\frac{1}{43}+\frac{1}{44}+\frac{1}{45}+\frac{1}{46}+\frac{1}{47}+\frac{1}{48}\). Notice that 1/43 is the larges term and 1/48 is the smallest term.

If all 6 terms were equal to 1/43, then the sum would be 6/43=~1/7, but since actual sum is less than that, then we have that K<1/7.

If all 6 terms were equal to 1/48, then the sum would be 6/48=1/8, but since actual sum is more than that, then we have that K>1/8.

Therefore, 1/8<K<1/7. So, K must be closer to 1/8 than it is to 1/6.

Answer: C.

Similar question to practice from OG: m-is-the-sum-of-the-reciprocals-of-the-consecutive-integers-143703.html

Hope it helps.


Bunuel, I understand your method. However, how can we know that the distance between k and 1/8 is shorter than the distance between k and 1/6. For example, if k were almost 1/7, we would have to calculate the distance between 1/8 and 1/7 and also the distance between 1/7 and 1/6.
I make this comment because the GMAT Prep explains that point, but it does that in a complex way.
Thanks!

Even if K=1/7, still the distance between 1/8 and 1/7 is less than the distance between 1/7 and 1/6.
avatar
PareshGmat
Joined: 27 Dec 2012
Last visit: 10 Jul 2016
Posts: 1,534
Own Kudos:
8,102
 [7]
Given Kudos: 193
Status:The Best Or Nothing
Location: India
Concentration: General Management, Technology
WE:Information Technology (Computer Software)
Posts: 1,534
Kudos: 8,102
 [7]
7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I did in this way
\(\frac{1}{43} + \frac{1}{44} + \frac{1}{45} + \frac{1}{46} + \frac{1}{47} + \frac{1}{48}\)

\(= (\frac{1}{43} + \frac{1}{48}) + (\frac{1}{44} + \frac{1}{47}) + (\frac{1}{45} + \frac{1}{46})\) .... Grouping the denominator's whose addition is same (91)

\(= \frac{1}{24} + \frac{1}{24} + \frac{1}{24}\) (Approx)

\(= \frac{3}{24}\) (Approx)

\(= \frac{1}{8}\)
Answer = C
User avatar
swanidhi
Joined: 11 Oct 2013
Last visit: 14 Jul 2023
Posts: 68
Own Kudos:
323
 [3]
Given Kudos: 137
Concentration: Marketing, General Management
GMAT 1: 600 Q41 V31
GMAT 1: 600 Q41 V31
Posts: 68
Kudos: 323
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
One way would be to find the middle terms.
Since total terms is 5. Middle term will be 3rd term. i.e. 1/45. Which should be the approximate (but less) than original mean.
1/45 * 5 = 1/9. So you know that the sum will be very lose to 1/9 but just a little more. 1/8 is the closest and also the correct answer.
User avatar
minwoswoh
Joined: 10 May 2014
Last visit: 17 Nov 2021
Posts: 115
Own Kudos:
Given Kudos: 28
Posts: 115
Kudos: 392
Kudos
Add Kudos
Bookmarks
Bookmark this Post
swanidhi
One way would be to find the middle terms.
Since total terms is 5. Middle term will be 3rd term. i.e. 1/45. Which should be the approximate (but less) than original mean.
1/45 * 5 = 1/9. So you know that the sum will be very lose to 1/9 but just a little more. 1/8 is the closest and also the correct answer.
There are actually 6 terms. Anyway, your approach may work in this case.
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,349
 [4]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,349
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
fozzzy
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

We want the approximate sum of 1/43 + 1/44 + 1/45 + . . . + 1/48

Let's make the following observations about the upper and lower values:

Upper values: If all 6 fractions were 1/43, the sum would be (6)(1/43) = 6/43 ~ 6/42 = 1/7

Lower values: If all 6 fractions were 1/48, the sum would be (6)(1/48) = 6/48 = 1/8

From this we can conclude that 1/8 < K < 1/7

If K is between 1/8 and 1/7, then K must be closer to 1/8 than it is to 1/6

Answer = C

Cheers,
Brent
User avatar
saukrit
Joined: 05 Jul 2018
Last visit: 11 Nov 2025
Posts: 378
Own Kudos:
Given Kudos: 325
Status:Current student at IIMB
Affiliations: IIM Bangalore
Location: India
Concentration: General Management, Technology
GMAT 1: 600 Q47 V26
GRE 1: Q162 V149
GPA: 3.6
WE:Information Technology (Consulting)
Products:
GMAT 1: 600 Q47 V26
GRE 1: Q162 V149
Posts: 378
Kudos: 420
Kudos
Add Kudos
Bookmarks
Bookmark this Post
all 1/42...would have led to 6/42=1/7

all 1/48 would have led to 6/48=1/8

Clearly it will be nearer to 1/8. than anything else. Hence C
User avatar
SchruteDwight
Joined: 03 Sep 2018
Last visit: 30 Mar 2023
Posts: 167
Own Kudos:
113
 [1]
Given Kudos: 923
Location: Netherlands
GPA: 4
Products:
Posts: 167
Kudos: 113
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
total numbers = 48-43+1=6
Average (48+43)/2=45.5
Sum of recriproal = 6*10/455 which is approximately 6/45 which is 1/7.5 –> closest is 1/8
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 19 Nov 2025
Posts: 21,716
Own Kudos:
26,996
 [4]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,716
Kudos: 26,996
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
fozzzy
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8

We see that K = 1/43 + 1/44 + 1/45 + 1/46 + 1/47 + 1/48. We see that K is a sum of 6 numbers. Since each number is less than 1/42 and greater than or equal to 1/48, a lower estimate for K is 6 x 1/48 = 6/48 = ⅛, and an upper estimate for K is 6 x 1/42 = 6/42 = 1/7. In other words, K is between 1/7 and 1/8. Therefore, K is closest to 1/8.

Answer: C
User avatar
Basshead
Joined: 09 Jan 2020
Last visit: 07 Feb 2024
Posts: 925
Own Kudos:
Given Kudos: 432
Location: United States
Posts: 925
Kudos: 302
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The reciprocals of consecutive integers from 43 to 48, inclusive, are: \(\frac{1}{43} + \frac{1}{44} + \frac{1}{45} + \frac{1}{46} + \frac{1}{47} + \frac{1}{47}\)

Notice that if all 6 numbers were the reciprocal of 43, we would have \(\frac{6}{43}\).

If all 6 numbers were 48, we would have \(\frac{6}{48}\).

Simply to get: \(\frac{1}{7}\) (approximately) and \(\frac{1}{8}\)

\(\frac{1}{7}\) < K < \(\frac{1}{8}\)

K is closest to \(\frac{1}{8}\).

Answer is C.
User avatar
DanTheGMATMan
Joined: 02 Oct 2015
Last visit: 18 Nov 2025
Posts: 378
Own Kudos:
Given Kudos: 9
Expert
Expert reply
Posts: 378
Kudos: 226
Kudos
Add Kudos
Bookmarks
Bookmark this Post
­GMAT test writers absolutely love this problem, and so do we:

­
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,589
Own Kudos:
Posts: 38,589
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts