fskilnik wrote:

GMATH practice exercise (Quant Class 19)

If Rebeca drives to work at x mph she will be one minute late, but if she drives at y mph she will be one minute early. How far (in miles) does Rebeca drive to work?

(1) x and y differ by seven miles per hour.

(2) y is 11% greater than x.

\(?\,\, = \,\,d\,\,\,\,\left( {{\rm{miles}}} \right)\)

\(\left. \matrix{

\left( {{\rm{late}}} \right)\,\,:\,\,\,d\,\,{\rm{miles}}\left( {{{60\,\,\min } \over {x\,\,{\rm{miles}}}}} \right)\,\,\, = \,\,\,{{60d} \over x}\,\,\min \,\,\, \hfill \cr

\left( {{\rm{early}}} \right)\,\,:\,\,\,d\,\,{\rm{miles}}\left( {{{60\,\,\min } \over {y\,\,{\rm{miles}}}}} \right)\,\,\, = \,\,\,{{60d} \over y}\,\,\min \hfill \cr} \right\}\,\,\,\,\,\mathop \Rightarrow \limits^{{\rm{stem}}} \,\,\,\,\,\,{{60d} \over x} - {{60d} \over y} = 2\,\,\,\,\left[ {\min } \right]\,\,\,\,\, \Rightarrow \,\,\,\,\,30d\left( {{1 \over x} - {1 \over y}} \right) = 1\,\,\,\,\,\,\,\left( * \right)\)

\(\left( 1 \right)\,\,\,y - x = 7\,\,\,\left( {y > x} \right)\,\,\,\,\left[ {mph} \right]\)

\(\left\{ \matrix{

\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {1,8} \right)\,\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,30d\left( {1 - {1 \over 8}} \right) = 1\,\,\,\,\,\mathop \Rightarrow \limits^{{\rm{viable}}!} \,\,\,\,\,? = {8 \over 7}\left( {{1 \over {30}}} \right) \hfill \cr

\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {2,9} \right)\,\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,30d\left( {{1 \over 2} - {1 \over 9}} \right) = 1\,\,\,\,\,\mathop \Rightarrow \limits^{{\rm{viable}}!} \,\,\,\,\,? \ne {8 \over 7}\left( {{1 \over {30}}} \right) \hfill \cr} \right.\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,{\rm{INSUFF}}.\)

\(\left( 2 \right)\,\,\,y = {{111} \over {100}}x\,\,\,\,\,\left\{ \matrix{

\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {1,{{111} \over {100}}} \right)\,\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,30d\left( {1 - {{100} \over {111}}} \right) = 1\,\,\,\,\,\mathop \Rightarrow \limits^{{\rm{viable}}!} \,\,\,\,\,? = {{111} \over {11}}\left( {{1 \over {30}}} \right) \hfill \cr

\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {100,111} \right)\,\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,30d\left( {{1 \over {100}} - {1 \over {111}}} \right) = 1\,\,\,\,\,\mathop \Rightarrow \limits^{{\rm{viable}}!} \,\,\,\,\,? \ne {{111} \over {11}}\left( {{1 \over {30}}} \right) \hfill \cr} \right.\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,{\rm{INSUFF}}.\)

\(\left( {1 + 2} \right)\,\,\,\left\{ \matrix{

\,y - x = 7 \hfill \cr

\,y = {{111} \over {100}}x \hfill \cr} \right.\,\,\,\,\, \Rightarrow \,\,\,\,\,{{111} \over {100}}x - x = 7\,\,\,\,\, \Rightarrow \,\,\,\,\,x\,\,{\rm{unique}}\,\,\,\,\,\left( {y = x + 7\,\,{\rm{unique}}} \right)\,\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,\,d\,\,{\rm{unique}}\,\,\,\, \Rightarrow \,\,\,\,\,\,\,{\rm{SUFF}}.\)

The correct answer is (C).

We follow the notations and rationale taught in the

GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here: https://gmath.net