GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Sep 2018, 17:01

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 + 1/9

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49320
If S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 + 1/9  [#permalink]

Show Tags

New post 25 Jun 2018, 05:28
12
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

78% (01:06) correct 22% (01:20) wrong based on 251 sessions

HideShow timer Statistics

If \(S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2}\), which of the following is true?


A. S > 3

B. S = 3

C. 2 < S < 3

D. S = 2

E. S < 2



NEW question from GMAT® Official Guide 2019


(PS06243)

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

CEO
CEO
User avatar
D
Joined: 12 Sep 2015
Posts: 2889
Location: Canada
Re: If S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 + 1/9  [#permalink]

Show Tags

New post 25 Jun 2018, 06:03
Top Contributor
1
Bunuel wrote:
If \(S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2}\), which of the following is true?


A. S > 3

B. S = 3

C. 2 < S < 3

D. S = 2

E. S < 2




\(S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2}\) = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + . . . .

Now, let's convert a few of the fractions to decimal approximations...
S = 1 + 0.25 + 0.11 + 0.06 + 0.04 + . . .

Add the first 4 values....
S = 1.42 + 0.04 + . . .

IMPORTANT: Notice that each fraction is less than the fraction before it
So, all of the 5 decimals after 0.04 will be less than 0.04
So, if we replace all of those 5 decimals with 0.04, our new sum will be greater than the original sum

So: S < 1.42 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04

Simplify: S < 1.42 + 0.24
Simplify: S < 1.66

Answer: E

Cheers,
Brent
_________________

Brent Hanneson – GMATPrepNow.com
Image
Sign up for our free Question of the Day emails

Manager
Manager
avatar
D
Joined: 17 May 2015
Posts: 237
If S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 + 1/9  [#permalink]

Show Tags

New post 25 Jun 2018, 06:05
Bunuel wrote:
If \(S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2}\), which of the following is true?


A. S > 3

B. S = 3

C. 2 < S < 3

D. S = 2

E. S < 2



NEW question from GMAT® Official Guide 2019


(PS06243)

Hi,

For simplicity, let's break the given series in three parts as follows:

\(S_{1} = 1\),

\(S_{2} = \frac{1}{2^2} + \frac{1}{3^2}\), and

\(S_{3} = \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2}\)

In \(S_{2}\) larger term is \(\frac{1}{2^2}\), and there are two terms. Hence,

\(S_{2} = \frac{1}{2^2} + \frac{1}{3^2} < 2*\frac{1}{4} = \frac{1}{2}\) --- (1)

Similarly, in series \(S_{3}\) the largest term is \(\frac{1}{4^2} = \frac{1}{16}\) and there are total 7 terms. Hence,

\(S_{3} = \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2} < 7* \frac{1}{16} < 8*\frac{1}{16} = \frac{1}{2}\) --- (2)

\(S = S_{1} + S_{2} + S_{3} < 1 + \frac{1}{2} + \frac{1}{2} = 2\)

Hence \(S < 2\). Answer (E).

Thanks.
SC Moderator
User avatar
D
Joined: 13 Apr 2015
Posts: 1703
Location: India
Concentration: Strategy, General Management
GMAT 1: 200 Q1 V1
GPA: 4
WE: Analyst (Retail)
GMAT ToolKit User Premium Member CAT Tests
Re: If S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 + 1/9  [#permalink]

Show Tags

New post 25 Jun 2018, 06:07
Since the terms after 1/9 add on to the hundreths place and since its easy to calculate upto 1/25, let's maximize all the terms after 1/25 by assuming the remaining terms as 1/25.

S = 1 + 0.25 + 0.11 + 0.0625 + 0.04*6
S = 1.4225 + 0.24 = 1.6625 < 2

Answer: E
Intern
Intern
avatar
B
Joined: 14 Feb 2018
Posts: 11
Location: Russian Federation
Re: If S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 + 1/9  [#permalink]

Show Tags

New post 10 Jul 2018, 13:26
Can smbd post explanation from OG?
Director
Director
User avatar
P
Status: Learning stage
Joined: 01 Oct 2017
Posts: 859
WE: Supply Chain Management (Energy and Utilities)
Premium Member CAT Tests
If S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 + 1/9  [#permalink]

Show Tags

New post 10 Jul 2018, 23:59
[quote="Bunuel"]If \(S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2}\), which of the following is true?


A. S > 3

B. S = 3

C. 2 < S < 3

D. S = 2

E. S < 2

We have the terms after \(\frac{1}{5^2}\) are close to zero. Hence the sum of the terms henceforth \(\frac{1}{5^2}\) can be approximated to zero.
Hence \(S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2}\) reduces to
\(S=1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}\)
Or, \(S=\frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}\)=1+0.25+0.11+0.0625+0.04=1.4625<2
So S<2.

Ans (E)
_________________

Regards,

PKN

Rise above the storm, you will find the sunshine

GMAT Club Bot
If S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 + 1/9 &nbs [#permalink] 10 Jul 2018, 23:59
Display posts from previous: Sort by

If S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 + 1/9

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.