GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Jun 2018, 18:35

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If the positive integer n is added to each of the integers 69, 94, and

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
4 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 46035
If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 16 Jun 2016, 05:41
4
36
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

76% (01:46) correct 24% (02:07) wrong based on 821 sessions

HideShow timer Statistics

If the positive integer n is added to each of the integers 69, 94, and 121, what is the value of n?

(1) 69 + n and 94 + n are the squares of two consecutive integers
(2) 94 + n and 121 + n are the squares of two consecutive integers

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

14 KUDOS received
Manager
Manager
avatar
Joined: 21 Sep 2015
Posts: 80
Location: India
GMAT 1: 730 Q48 V42
GMAT 2: 750 Q50 V41
Reviews Badge
If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post Updated on: 03 Aug 2016, 09:44
14
5
If the positive integer n is added to each of the integers 69, 94, and 121, what is the value of n?

(1) 69 + n and 94 + n are the squares of two consecutive integers

Difference between the two squares is 25 since 94-69=25. This difference is unique.
For example 4^2 - 3^2 = 7
5^2 -4^2 = 9

As can be seen the difference goes on increasing and hence only one unique value is possible. SUFFICIENT

(2) 94 + n and 121 + n are the squares of two consecutive integers

Difference between the squares is 27. Again this difference is unique . SUFFICIENT.

(For those wondering what n is ;
n=75 and the consecutive integeres are 12, 13 & 14)
_________________

Appreciate any KUDOS given ! :)


Originally posted by rishi02 on 16 Jun 2016, 06:31.
Last edited by rishi02 on 03 Aug 2016, 09:44, edited 1 time in total.
5 KUDOS received
Intern
Intern
User avatar
Joined: 16 Jul 2014
Posts: 19
Location: United Arab Emirates
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 17 Jun 2016, 23:56
5
2
Let x and y be 2 consecutive squares such that y>x.

Then root(y) = root (x) + 1

Now let's look at the question.

1) 94 + n and 69 + n are consecutive sqaures

x = 69 + n
y = 94+ n

root(y) = root (x) + 1
Squaring the above equation we get: y = × + 2root (×) +1

2root (×) = y - x - 1 = 94 + n - 69 - n - 1 = 24
Root (x) = 12

x= 144

n = 144 - 69 = 75

y= 94 + 75 = 169

Sufficient

2) 94 + n and 121 + n are consecutive squares.

Sufficient. Can be proven the same way as case 1.
_________________

KUDOS is great way to help those who have helped you.

THE KILL SET - 700 level Sets quetions

Director
Director
User avatar
B
Status: I don't stop when I'm Tired,I stop when I'm done
Joined: 11 May 2014
Posts: 554
Location: Bangladesh
Concentration: Finance, Leadership
GPA: 2.81
WE: Business Development (Real Estate)
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 18 Jun 2016, 01:12
rishi02 wrote:
If the positive integer n is added to each of the integers 69, 94, and 121, what is the value of n?

(1) 69 + n and 94 + n are the squares of two consecutive integers

Difference between the two squares is 25 since 94-69=25. This difference is unique.
For example 4^2 - 3^2 = 7
5^2 -4^2 = 9


As can be seen the difference goes on increasing and hence only one unique value is possible. SUFFICIENT

(2) 94 + n and 121 + n are the squares of two consecutive integers

Difference between the squares is 27. Again this difference is unique . SUFFICIENT.

(For those wondering what n is ;
n=75 and the consecutive integeres are 12, 13 & 14)


Interesting application.

Can you elaborate the highlighted Concept ?

Thanks
_________________

Md. Abdur Rakib

Please Press +1 Kudos,If it helps
Sentence Correction-Collection of Ron Purewal's "elliptical construction/analogies" for SC Challenges

7 KUDOS received
Manager
Manager
avatar
Joined: 21 Sep 2015
Posts: 80
Location: India
GMAT 1: 730 Q48 V42
GMAT 2: 750 Q50 V41
Reviews Badge
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 18 Jun 2016, 01:57
7
5
AbdurRakib

4^2 - 3^2 = 7
5^2 -4^2 = 9
6^2 -5^2 =11
100^2-99^2 = 199

The difference between the squares of consecutive integers always increases since a^2 -b^2 = (a+b)(a-b)

(a-b) will always be 1 since consecutive integers so as the integers increase a + b will also increase

What you can also figure out from this is that a+b = 25 for this problem

Therefore 2a +1 =25 and a =12

However you do not need to do this for a DS problem. Its sufficient to know that the difference is unique :)

Hope its clear !
_________________

Appreciate any KUDOS given ! :)

5 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 02 Dec 2014
Posts: 354
Location: Russian Federation
Concentration: General Management, Economics
GMAT 1: 640 Q44 V33
WE: Sales (Telecommunications)
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 18 Jun 2016, 07:41
5
3
Bunuel wrote:
If the positive integer n is added to each of the integers 69, 94, and 121, what is the value of n?

(1) 69 + n and 94 + n are the squares of two consecutive integers
(2) 94 + n and 121 + n are the squares of two consecutive integers


Statement 1. Let x and (x+1) be two consecutive integers. Then we have: 69+n=x^2 and 94+n=(x+1)^2. Substitute (69+n) into second equation to get 25+x^2=x^2 + 2x + 1 ==> 2x=24 and x=12 Hence n=75 Sufficient
Statement 2. The same as Statement 1. Sufficient
_________________

"Are you gangsters?" - "No we are Russians!"

Expert Post
5 KUDOS received
SVP
SVP
avatar
B
Joined: 06 Nov 2014
Posts: 1888
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 19 Jun 2016, 04:06
5
3
Bunuel wrote:
If the positive integer n is added to each of the integers 69, 94, and 121, what is the value of n?

(1) 69 + n and 94 + n are the squares of two consecutive integers
(2) 94 + n and 121 + n are the squares of two consecutive integers


Statement 1: 69 + n and 94 + n are the squares of two consecutive integers
The difference between the numbers = 94 - 69 = 25
Let us list down some of the perfect squares.
Since 69 is near to 8^2, I will start from 8^2

64, 81, 100, 121, 144, 169, 196, 225.

Difference between 169 and 144 = 25
Hence 94 + n = 169, and 69 + n = 144

n = 75
SUFFICIENT

Statement 2: 94 + n and 121 + n are the squares of two consecutive integers
Difference between the two = 121 - 94 = 27
Applying the same logic and writing the perfect squares.

100, 121, 144, 169, 196, 225

Hence the numbers are 196 and 169
121 + n = 196 and 94 + n = 169
n = 75
SUFFICIENT

Correct Option: D
Senior Manager
Senior Manager
User avatar
Joined: 11 Nov 2014
Posts: 344
Location: India
Concentration: Finance, International Business
WE: Project Management (Telecommunications)
GMAT ToolKit User Premium Member
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 03 Aug 2016, 09:42
Good approach?

we know
n>0
n is an integer


S1
(n-69)(n-94)=n*n*(n+1)*(n+1)
(n-69)(n-94)=n^2*(n+1)*(n+1)

one variable, solved

same with S2

D
6 KUDOS received
Manager
Manager
User avatar
S
Joined: 30 Dec 2015
Posts: 89
GPA: 3.92
WE: Engineering (Aerospace and Defense)
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 29 Oct 2016, 19:40
6
1
AbdurRakib wrote:
rishi02 wrote:
If the positive integer n is added to each of the integers 69, 94, and 121, what is the value of n?

(1) 69 + n and 94 + n are the squares of two consecutive integers

Difference between the two squares is 25 since 94-69=25. This difference is unique.
For example 4^2 - 3^2 = 7
5^2 -4^2 = 9


As can be seen the difference goes on increasing and hence only one unique value is possible. SUFFICIENT

(2) 94 + n and 121 + n are the squares of two consecutive integers

Difference between the squares is 27. Again this difference is unique . SUFFICIENT.

(For those wondering what n is ;
n=75 and the consecutive integeres are 12, 13 & 14)


Interesting application.

Can you elaborate the highlighted Concept ?

Thanks


the BIG IDEA here:
The difference between squares of two consecutive integers = Sum of the two consecutive integers
eg: \(10^2 - 9^2 = (10+9)(10-9) = 19\) so on and so forth

In Statement 1 we are told that (69+n) & (94+n) are the squares of two consecutive integers,
So use the above idea:
\((94+n)-(69+n) = 25\)
Since we know that the sum of the two consecutive integers is 25 & to find the individual consecutive integers: 25 = 2n+1 (since integers are consecutive)
n = 12 & (n+1) = 13
Now that we have each individual integer:
\(12^2 = (69+n)\)
\(144 = 69 + n\)
\(n = 75\)

Same applies for statement 2
_________________

If you analyze enough data, you can predict the future.....its calculating probability, nothing more!

Expert Post
10 KUDOS received
Target Test Prep Representative
User avatar
G
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 2738
Location: United States (CA)
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 08 Dec 2016, 09:55
10
1
Bunuel wrote:
If the positive integer n is added to each of the integers 69, 94, and 121, what is the value of n?

(1) 69 + n and 94 + n are the squares of two consecutive integers
(2) 94 + n and 121 + n are the squares of two consecutive integers


We are given that the positive integer n is added to each of the integers 69, 94, and 121, and need to determine the value of n.

Statement One Alone:

69 + n and 94 + n are the squares of two consecutive integers.

From statement one, we can say that for some positive integer x, 69 + n = x^2 and 94 + n = (x + 1)^2. Let’s subtract the first equation from the second equation:

(94 + n) - (69 + n) = (x + 1)^2 - x^2
25 = x^2 + 2x + 1 - x^2
25 = 2x + 1
24 = 2x
12 = x

Since we know x = 12, we can substitute this into the first equation to determine the value of n:

69 + n = 12^2
69 + n = 144
n = 75

Statement one alone is sufficient to answer the question. Eliminate answer choices B, C and E.

Statement Two Alone:

94 + n and 121 + n are the squares of two consecutive integers.

We can use the same method that we used in statement one to solve for n. Therefore, without performing the actual calculations, we can conclude that we can find a unique value for n. Statement two alone is also sufficient to answer the question.

Answer: D
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Intern
Intern
avatar
B
Joined: 19 Sep 2016
Posts: 1
Location: Panama
Schools: Cox '20, Neeley '20
GPA: 3.98
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 03 Jun 2017, 17:33
ScottTargetTestPrep wrote:
Bunuel wrote:
If the positive integer n is added to each of the integers 69, 94, and 121, what is the value of n?

(1) 69 + n and 94 + n are the squares of two consecutive integers
(2) 94 + n and 121 + n are the squares of two consecutive integers


We are given that the positive integer n is added to each of the integers 69, 94, and 121, and need to determine the value of n.

Statement One Alone:

69 + n and 94 + n are the squares of two consecutive integers.

From statement one, we can say that for some positive integer x, 69 + n = x^2 and 94 + n = (x + 1)^2. Let’s subtract the first equation from the second equation:

(94 + n) - (69 + n) = (x + 1)^2 - x^2
25 = x^2 + 2x + 1 - x^2
25 = 2x + 1
24 = 2x
12 = x

Since we know x = 12, we can substitute this into the first equation to determine the value of n:

69 + n = 12^2
69 + n = 144
n = 75

Statement one alone is sufficient to answer the question. Eliminate answer choices B, C and E.

Statement Two Alone:

94 + n and 121 + n are the squares of two consecutive integers.

We can use the same method that we used in statement one to solve for n. Therefore, without performing the actual calculations, we can conclude that we can find a unique value for n. Statement two alone is also sufficient to answer the question.

Answer: D


ScottTargetTestPrep,
Could you please explain why did you subtract 69 + n = x^2 and 94 + n = (x + 1)^2 ?

Thank you.
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 7000
Premium Member
Re: If the positive integer n is added to each of the integers 69, 94, and [#permalink]

Show Tags

New post 09 Jun 2018, 14:14
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: If the positive integer n is added to each of the integers 69, 94, and   [#permalink] 09 Jun 2018, 14:14
Display posts from previous: Sort by

If the positive integer n is added to each of the integers 69, 94, and

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.