It is currently 15 Dec 2017, 23:30

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If x is a positive integer, is x^1/2 an integer

  post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

5 KUDOS received
Manager
Manager
User avatar
Joined: 05 Jun 2009
Posts: 112

Kudos [?]: 316 [5], given: 4

If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 09 Jan 2010, 23:55
5
This post received
KUDOS
10
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

74% (00:45) correct 26% (01:07) wrong based on 941 sessions

HideShow timer Statistics

If x is a positive integer, is \(\sqrt{x}\) an integer?

(1) \(\sqrt{4x}\) is an integer.

(2) \(\sqrt{3x}\) is not an integer.

[Reveal] Spoiler:
the explanation says since sqrt (4x) is an integer ,it follows that 4x must be square of an integer and so x must be
square of an integer and therefore sqrt (x) is an integer .
i was trying to solve it this way sqrt(4x) =integer ,=> 2. sqrt (x) =integer => sqrt (x) =integer/2 =integer or non integer for example if 2 .sqrt (x) = 4 ,=> sqrt (x) =2 and so sqrt (x) is integer
but if 2. sqrt (x) =3 ,=> sqrt (x) =3/2 and so sqrt (x) is non integer

friends please help me in pointing out whee i am going wrong.

Thanks in advance ..


OPEN DISCUSSION OF THIS QUESTION IS HERE: https://gmatclub.com/forum/if-x-is-a-po ... 65976.html
[Reveal] Spoiler: OA

Last edited by Bunuel on 24 Nov 2017, 23:05, edited 2 times in total.
Renamed the topic, edited the question and added OA.

Kudos [?]: 316 [5], given: 4

Manager
Manager
avatar
Joined: 06 Jan 2010
Posts: 70

Kudos [?]: 17 [0], given: 15

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 10 Jan 2010, 07:42
if x is a positive integer ,is sqrt (x) an integer

(1) sqrt(4x) is an integer .

(2) sqrt (3x) is not an integer .

the explanation says since sqrt (4x) is an integer ,it follows that 4x must be square of an integer and so x must be
square of an integer and therefore sqrt (x) is an integer .
i was trying to solve it this way sqrt(4x) =integer ,=> 2. sqrt (x) =integer => sqrt (x) =integer/2 =integer or non integer for example if 2 .sqrt (x) = 4 ,=> sqrt (x) =2 and so sqrt (x) is integer
but if 2. sqrt (x) =3 ,=> sqrt (x) =3/2 and so sqrt (x) is non integer
yes.
sqrt(x) is an integer.

how i worked it out :
sqrt(4x) is an integer ==> 2 * sqrt(x) is an integer

in order that the product of 2 and sqrt(x) be an integer, sqrt(x) must either be
1) an integer
2) exactly half of an integer. i.e a number like 0.5, 1.5, 2.5 etc etc
you worked that out as well.
sqrt(x) = integer/2

we also know x is an integer. is there any integer whose square root is a half of an integer ?
no!

therefore the only other alternative is sqrt(x) is a whole integer.

hope that helped

Kudos [?]: 17 [0], given: 15

Manager
Manager
User avatar
Joined: 05 Jun 2009
Posts: 112

Kudos [?]: 316 [0], given: 4

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 11 Jan 2010, 05:50
Hi Janani ,

Thanks for the explanation ,do we have a rule like we can't have a sqrt (x)=integer /2,
or its by observation ...

Kudos [?]: 316 [0], given: 4

2 KUDOS received
Manager
Manager
avatar
Joined: 17 Jan 2010
Posts: 147

Kudos [?]: 94 [2], given: 11

Concentration: General Management, Strategy
GPA: 3.78
WE: Engineering (Manufacturing)
If x is a positive integer, is root(x) an integer? [#permalink]

Show Tags

New post 20 Feb 2010, 13:49
2
This post received
KUDOS
15
This post was
BOOKMARKED
If x is a positive integer, is \(\sqrt{x}\) an integer?

(1) \(\sqrt{4x}\) is an integer.
(2) \(\sqrt{3x}\) is not an integer.

This is the question from GMAT Quant Review. My logic to solve this question:

[Reveal] Spoiler:
\sqrt{4x}=2*\sqrt{x}, so \sqrt{x} can either be integer or not an integer (for example \sqrt{x}=2.5) and the 2*\sqrt{x} is still an integer. So Statement 1 is insufficient.

\sqrt{3x}= \sqrt{3}*\sqrt{x}. As \sqrt{3} is not an integer, the \sqrt{x} can be either integer or non integer and the \sqrt{3}*\sqrt{x} will still be not integer. So Statement 2 is insufficient.

S1 and S2 together is still insufficient as \sqrt{x}=2 and \sqrt{x}=2.5 both satisfy statements requirement.

So I choose E as an answer.

Is there a flaw in my reasoning? OG Quant review answer to this question is different from E.
Please advice.

Kudos [?]: 94 [2], given: 11

Senior Manager
Senior Manager
User avatar
Joined: 22 Dec 2009
Posts: 356

Kudos [?]: 428 [0], given: 47

GMAT ToolKit User
Re: Is OG Quant question answer wrong? [#permalink]

Show Tags

New post 20 Feb 2010, 14:14
alexBLR wrote:
This is the question from GMAT Quant Review:

If x is a positive integer , is \sqrt{x} an integer?

1) \sqrt{4x} is an integer.
2) \sqrt{3x} is not an integer.

My logic to solve this question:

\sqrt{4x}=2*\sqrt{x}, so \sqrt{x} can either be integer or not an integer (for example \sqrt{x}=2.5) and the 2*\sqrt{x} is still an integer. So Statement 1 is insufficient.

\sqrt{3x}= \sqrt{3}*\sqrt{x}. As \sqrt{3} is not an integer, the \sqrt{x} can be either integer or non integer and the \sqrt{3}*\sqrt{x} will still be not integer. So Statement 2 is insufficient.

S1 and S2 together is still insufficient as \sqrt{x}=2 and \sqrt{x}=2.5 both satisfy statements requirement.

So I choose E as an answer.

Is there a flaw in my reasoning? OG Quant review answer to this question is different from E.
Please advice.


IMO D...

Ques: if x is a positive integer, is \(\sqrt{x}\) an integer?

S1: \(\sqrt{4x}\) is an integer

--> \(2* \sqrt{x}\) is an integer --> \(\sqrt{x}\) has to be an integer.. as x is a positive integer and hence cannot be a fraction. Therefore SUFF

S2: \(\sqrt{3x}\) is an integer
--> \(\sqrt{3}*\sqrt{x}\) --> \(\sqrt{x}\) is not an integer as same could be a of a form of \(a\sqrt{3}\) where 'a' is a positive integer. Therefore SUFF
_________________

Cheers!
JT...........
If u like my post..... payback in Kudos!! :beer

|Do not post questions with OA|Please underline your SC questions while posting|Try posting the explanation along with your answer choice|
|For CR refer Powerscore CR Bible|For SC refer Manhattan SC Guide|


~~Better Burn Out... Than Fade Away~~

Kudos [?]: 428 [0], given: 47

Expert Post
4 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42622

Kudos [?]: 135778 [4], given: 12711

If x is a positive integer, is root(x) an integer? [#permalink]

Show Tags

New post 20 Feb 2010, 14:57
4
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
jeeteshsingh wrote:
alexBLR wrote:
This is the question from GMAT Quant Review:

If x is a positive integer , is \sqrt{x} an integer?

1) \sqrt{4x} is an integer.
2) \sqrt{3x} is not an integer.

My logic to solve this question:

\sqrt{4x}=2*\sqrt{x}, so \sqrt{x} can either be integer or not an integer (for example \sqrt{x}=2.5) and the 2*\sqrt{x} is still an integer. So Statement 1 is insufficient.

\sqrt{3x}= \sqrt{3}*\sqrt{x}. As \sqrt{3} is not an integer, the \sqrt{x} can be either integer or non integer and the \sqrt{3}*\sqrt{x} will still be not integer. So Statement 2 is insufficient.

S1 and S2 together is still insufficient as \sqrt{x}=2 and \sqrt{x}=2.5 both satisfy statements requirement.

So I choose E as an answer.

Is there a flaw in my reasoning? OG Quant review answer to this question is different from E.
Please advice.


IMO D...

Ques: if x is a positive integer, is \(\sqrt{x}\) an integer?

S1: \(\sqrt{4x}\) is an integer

--> \(2* \sqrt{x}\) is an integer --> \(\sqrt{x}\) has to be an integer.. as x is a positive integer and hence cannot be a fraction. Therefore SUFF

S2: \(\sqrt{3x}\) is an integer
--> \(\sqrt{3}*\sqrt{x}\) --> \(\sqrt{x}\) is not an integer as same could be a of a form of \(a\sqrt{3}\) where 'a' is a positive integer. Therefore SUFF


If x is a positive integer, is \(\sqrt{x}\) an integer?

As given that \(x\) is a positive integer then \(\sqrt{x}\) is either an integer itself or an irrational number.

(1) \(\sqrt{4x}\) is an integer --> \(2\sqrt{x}=integer\) --> \(2\sqrt{x}\) to be an integer \(\sqrt{x}\) must be an integer or integer/2, but as \(x\) is an integer, then \(\sqrt{x}\) can not be integer/2, hence \(\sqrt{x}\) is an integer. Sufficient.

(2) \(\sqrt{3x}\) is not an integer --> if \(x=9\), condition \(\sqrt{3x}=\sqrt{27}\) is not an integer satisfied and \(\sqrt{x}=3\) IS an integer, BUT if \(x=2\), condition \(\sqrt{3x}=\sqrt{6}\) is not an integer satisfied and \(\sqrt{x}=\sqrt{2}\) IS NOT an integer. Two different answers. Not sufficient.

Answer: A.

jeeteshsingh, you should have spotted that there was something wrong with your solution as in DS two statements cannot give you TWO DIFFERENT answers to the question (as you've got).

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135778 [4], given: 12711

Senior Manager
Senior Manager
User avatar
Joined: 22 Dec 2009
Posts: 356

Kudos [?]: 428 [0], given: 47

GMAT ToolKit User
Re: Is OG Quant question answer wrong? [#permalink]

Show Tags

New post 20 Feb 2010, 15:13
Bunuel wrote:
jeeteshsingh, you should have spotted that there was something wrong with your solution as in DS two statements can not give you TWO DIFFERENT answers to the question (as you've got).

Hope it helps.


:wall My Bad.... overlooked it... Infact today I was telling this to someone over the forum that both the statements in DS would always be in sync..

Thanks Bunuel... for pointing this out.
_________________

Cheers!
JT...........
If u like my post..... payback in Kudos!! :beer

|Do not post questions with OA|Please underline your SC questions while posting|Try posting the explanation along with your answer choice|
|For CR refer Powerscore CR Bible|For SC refer Manhattan SC Guide|


~~Better Burn Out... Than Fade Away~~

Kudos [?]: 428 [0], given: 47

Manager
Manager
avatar
Joined: 17 Jan 2010
Posts: 147

Kudos [?]: 94 [0], given: 11

Concentration: General Management, Strategy
GPA: 3.78
WE: Engineering (Manufacturing)
Re: Is OG Quant question answer wrong? [#permalink]

Show Tags

New post 20 Feb 2010, 15:42
When I assumed the case \sqrt{x}=2.5 I did not take into the account that x will not be an integer in this case(x=6.25). Thanks Bunuel

Kudos [?]: 94 [0], given: 11

1 KUDOS received
Manager
Manager
avatar
Joined: 27 Oct 2009
Posts: 142

Kudos [?]: 113 [1], given: 18

Location: Montreal
Schools: Harvard, Yale, HEC
Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 29 Sep 2010, 06:09
1
This post received
KUDOS
2
This post was
BOOKMARKED
If x is a positive integer, is \(\sqrt{x}\) an integer?

(1) \(\sqrt{4x}\) is an integer.

(2) \(\sqrt{3x}\) is not an integer.

Last edited by ezinis on 29 Sep 2010, 08:39, edited 1 time in total.

Kudos [?]: 113 [1], given: 18

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42622

Kudos [?]: 135778 [1], given: 12711

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 29 Sep 2010, 06:29
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
ezinis wrote:
If x is a positive integer, is \sqrt{x} an integer?
(1) \(\sqrt{4x}\) is an integer4.
(2) \(\sqrt{3x}\) is an integer.

I am not satisfied with the official explanation. Please give yours, thanks.


I think (2) should be \(\sqrt{3x}\) is NOT an integer.

If \(x=integer\), is \(\sqrt{x}=integer\)?

(1) \(\sqrt{4x}\) is an integer --> \(2\sqrt{x}=integer\) --> \(2\sqrt{x}\) to be an integer \(\sqrt{x}\) must be an integer or integer/2, but as \(x\) is an integer, then \(\sqrt{x}\) can not be integer/2, hence \(\sqrt{x}\) is an integer. Sufficient.

(2)\(\sqrt{3x}\) is not an integer --> if \(x=9\), condition \(\sqrt{3x}=\sqrt{27}\) is not an integer satisfied and \(\sqrt{x}=3\) IS an integer, BUT if \(x=2\), condition \(\sqrt{3x}=\sqrt{6}\) is not an integer satisfied and \(\sqrt{x}=\sqrt{2}\) IS NOT an integer. Two different answers. Not sufficient.

Answer: A.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135778 [1], given: 12711

Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 792

Kudos [?]: 1232 [0], given: 25

Location: London
GMAT ToolKit User Reviews Badge
Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 29 Sep 2010, 07:10
ezinis wrote:
If x is a positive integer, is \sqrt{x} an integer?
(1) \sqrt{4x} is an integer4.
(2) \sqrt{3x} is an integer.

I am not satisfied with the official explanation. Please give yours, thanks.


(1) \(\sqrt{4x} = 2 * \sqrt{x}\)
If this is an integer, then \(\sqrt{x}\) has to be an integer

(2) \(\sqrt{3x} = \sqrt{3} * \sqrt{x}\)
For this to be an integer, \(\sqrt{x}\) must be of the form \(\sqrt{3} * Integer\)
So \(\sqrt{x}\) is not an integer

I am not sure if the question is correct as (1) and (2) are contradicting. Is it supposed to say \(\sqrt{3x}\) is not an integer ?
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

GMAT Club Premium Membership - big benefits and savings

Kudos [?]: 1232 [0], given: 25

Math Forum Moderator
avatar
Joined: 20 Dec 2010
Posts: 1949

Kudos [?]: 2141 [0], given: 376

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 09 Jan 2011, 08:40
I didn't get the explanation:

if root(4x) is an integer fact.
Then 2 * root(x) is an integer. So what!!!!!!!!!!
This doesn't mean that root(x) should be an integer. Because root(x) can be 1.5 and yet won't distort the fact that 2 * 1.5 = 3 is an integer.

So, if x = 2.25(a non integer) root(x)=1.5 and 2*1.5=3 is an integer.
if x=4(an integer) root(x)=2 and 2*2=4 is also an integer.
So, statement one would be true for two values of x (2.25 and 4).
root(2.25) is 1.5, not an integer. root(4) is 2, an integer. This statement is insufficient to conclude whether root(x) is an integer.

What's wrong with my explanation??
_________________

~fluke

GMAT Club Premium Membership - big benefits and savings

Kudos [?]: 2141 [0], given: 376

Expert Post
6 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42622

Kudos [?]: 135778 [6], given: 12711

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 09 Jan 2011, 08:52
6
This post received
KUDOS
Expert's post
7
This post was
BOOKMARKED
fluke wrote:
I didn't get the explanation:

if root(4x) is an integer fact.
Then 2 * root(x) is an integer. So what!!!!!!!!!!
This doesn't mean that root(x) should be an integer. Because root(x) can be 1.5 and yet won't distort the fact that 2 * 1.5 = 3 is an integer.

So, if x = 2.25(a non integer) root(x)=1.5 and 2*1.5=3 is an integer.
if x=4(an integer) root(x)=2 and 2*2=4 is also an integer.
So, statement one would be true for two values of x (2.25 and 4).
root(2.25) is 1.5, not an integer. root(4) is 2, an integer. This statement is insufficient to conclude whether root(x) is an integer.

What's wrong with my explanation??


You forgot that x is a positive integer, so \(\sqrt{x}\) cannot equal to \(\frac{integer}{2}\). Generally \(\sqrt{integer}\) is either an integer or an irrational number.

Complete solution:

If x is a positive integer, is sqrt(x) an integer

If \(x=integer\), is \(\sqrt{x}=integer\)?

(1) \(\sqrt{4x}\) is an integer --> \(2\sqrt{x}=integer\) --> \(2\sqrt{x}\) to be an integer \(\sqrt{x}\) must be an integer or integer/2, but as \(x\) is an integer, then \(\sqrt{x}\) can not be integer/2, hence \(\sqrt{x}\) is an integer. Sufficient.

(2)\(\sqrt{3x}\) is not an integer --> if \(x=9\), condition \(\sqrt{3x}=\sqrt{27}\) is not an integer satisfied and \(\sqrt{x}=3\) IS an integer, BUT if \(x=2\), condition \(\sqrt{3x}=\sqrt{6}\) is not an integer satisfied and \(\sqrt{x}=\sqrt{2}\) IS NOT an integer. Two different answers. Not sufficient.

Answer: A.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135778 [6], given: 12711

Math Forum Moderator
avatar
Joined: 20 Dec 2010
Posts: 1949

Kudos [?]: 2141 [0], given: 376

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 10 Jan 2011, 00:32
good explanation Bunuel and you are right in saying that I carelessly overlooked the fact that x was a positive integer...

thanks

~fluke
_________________

~fluke

GMAT Club Premium Membership - big benefits and savings

Kudos [?]: 2141 [0], given: 376

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42622

Kudos [?]: 135778 [0], given: 12711

Re: Integers [#permalink]

Show Tags

New post 28 Feb 2011, 11:56
Expert's post
1
This post was
BOOKMARKED
Merging similar topics.

Similar questions:
if-x-is-a-positive-integer-is-sqrt-x-an-integer-88994.html
value-of-x-107195.html
number-prop-ds-106886.html
number-system-106606.html
odd-vs-even-trick-question-106562.html
quant-review-2nd-edition-ds-104421.html
algebra-ds-101464.html
quant-review-2nd-edition-ds-104421.html
q-31-og-12-ds-101918.html
airthmetic-ds-108287.html

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135778 [0], given: 12711

Manager
Manager
avatar
Joined: 20 Jan 2011
Posts: 84

Kudos [?]: 44 [0], given: 23

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 19 Jul 2011, 05:29
Quote:
then sqrt(x) can not be integer/2

I think sqrt(x) can be integer/2 as long as (integer/2) itself is an integer :) i.e. that integer is multiple of 2. I think that is what bunuel meant.
And the answer remains same.
_________________

Conquer the Hell and make it Haven. Brain is your hell and Success is your haven!

"Kudos" is significant part of GMAT prep. If you like it, you just click it :)

Kudos [?]: 44 [0], given: 23

Senior Manager
Senior Manager
avatar
Joined: 12 Oct 2011
Posts: 254

Kudos [?]: 67 [0], given: 110

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 03 Jan 2012, 12:06
Oh nice problem. Took quite some time to answer it but got A.
Explanation by Bunuel is more than sufficient to understand the solution.
_________________

Consider KUDOS if you feel the effort's worth it

Kudos [?]: 67 [0], given: 110

Manager
Manager
User avatar
Joined: 29 Jul 2011
Posts: 104

Kudos [?]: 73 [0], given: 6

Location: United States
Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 03 Jan 2012, 13:31
Both equations and number plugging helps here.

1. sqrt(4x) = integer, that is 2 x sqrt(x) = integer. For this equation to be true, sqrt(x) has to be an integer. SUFFICIENT. If number plugging, use 4x4 and 4x9 combinations
2. sqrt(3x) = frac. Here, sqrt(3) x sqrt(x) = frac, that is frac x sqrt(x) = frac. Difficult to determine if this relationship can infer sqrt(x) as integer. So, let's go with number plugging. sqrt(3x4) = 12 satisfies, and sqrt(4) = integer. sqrt(3x5) = 15 satisfies, but sqrt(5) = frac. So, insufficient.

+1 for A.
_________________

I am the master of my fate. I am the captain of my soul.
Please consider giving +1 Kudos if deserved!

DS - If negative answer only, still sufficient. No need to find exact solution.
PS - Always look at the answers first
CR - Read the question stem first, hunt for conclusion
SC - Meaning first, Grammar second
RC - Mentally connect paragraphs as you proceed. Short = 2min, Long = 3-4 min

Kudos [?]: 73 [0], given: 6

Manager
Manager
avatar
Joined: 21 Jul 2012
Posts: 68

Kudos [?]: 8 [0], given: 32

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 15 Dec 2012, 10:21
Bunuel - can you further explain your explanation for Statement 1? I am confused because if x is a positive integer, sqrt(x) can equal an integer/2 if for example x was equal to 4. 4 is a positive integer and the square root of 4 is equal to 4/2. I think I am missing the overall takeaway, can you help clarify? Thanks!

Kudos [?]: 8 [0], given: 32

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42622

Kudos [?]: 135778 [1], given: 12711

Re: If x is a positive integer, is x^1/2 an integer [#permalink]

Show Tags

New post 16 Dec 2012, 07:37
1
This post received
KUDOS
Expert's post
jmuduke08 wrote:
Bunuel - can you further explain your explanation for Statement 1? I am confused because if x is a positive integer, sqrt(x) can equal an integer/2 if for example x was equal to 4. 4 is a positive integer and the square root of 4 is equal to 4/2. I think I am missing the overall takeaway, can you help clarify? Thanks!


4/2=2 and is not a fraction (integer/2 means reduced fraction).
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135778 [1], given: 12711

Re: If x is a positive integer, is x^1/2 an integer   [#permalink] 16 Dec 2012, 07:37

Go to page    1   2    Next  [ 40 posts ] 

Display posts from previous: Sort by

If x is a positive integer, is x^1/2 an integer

  post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.