Last visit was: 19 Nov 2025, 15:09 It is currently 19 Nov 2025, 15:09
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [463]
70
Kudos
Add Kudos
392
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [108]
19
Kudos
Add Kudos
89
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [93]
21
Kudos
Add Kudos
72
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [92]
18
Kudos
Add Kudos
74
Bookmarks
Bookmark this Post
7. Is x the square of an integer?

The question basically asks whether x is a perfect square (a perfect square, is an integer that is the square of an integer. For example 16=4^2, is a perfect square).

Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: \(36=2^2*3^2\), powers of prime factors 2 and 3 are even.

(1) When x is divided by 12 the remainder is 6. Given that \(x=12q+6=6(2q+1)=2*3*(2q+1)\). Now, since 2q+1 is an odd number then the power of 2 in x will be odd (1), thus x cannot be a perfect square. Sufficient.

(2) When x is divided by 14 the remainder is 2. Given that \(x=14p+2\). So, x could be 2, 16, 30, ... Thus, x may or may not be a perfect square. Not sufficient.

Answer: A.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [82]
20
Kudos
Add Kudos
62
Bookmarks
Bookmark this Post
6. Set S consists of more than two integers. Are all the integers in set S negative?

(1) The product of any three integers in the set is negative. If the set consists of only 3 terms, then the set could be either {negative, negative, negative} or {negative, positive, positive}. If the set consists of more than 3 terms, then the set can only have negative numbers. Not sufficient.

(2) The product of the smallest and largest integers in the set is a prime number. Since only positive numbers can be primes, then the smallest and largest integers in the set must be of the same sign. Thus the set consists of only negative or only positive integers. Not sufficient.

(1)+(2) Since the second statement rules out {negative, positive, positive} case which we had from (1), then we have that the set must have only negative integers. Sufficient.

Answer: C.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [75]
12
Kudos
Add Kudos
63
Bookmarks
Bookmark this Post
5. If a, b, and c are integers and a < b < c, are a, b, and c consecutive integers?

Note that:
A. The factorial of a negative number is undefined.
B. 0!=1.
C. Only two factorials are odd: 0!=1 and 1!=1.
D. Factorial of a number which is prime is 2!=2.

(1) The median of {a!, b!, c!} is an odd number. This implies that b!=odd. Thus b is 0 or 1. But if b=0, then a is a negative number, so in this case a! is not defined. Therefore a=0 and b=1, so the set is {0!, 1!, c!}={1, 1, c!}. Now, if c=2, then the answer is YES but if c is any other number then the answer is NO. Not sufficient.

(2) c! is a prime number. This implies that c=2. Not sufficient.

(1)+(2) From above we have that a=0, b=1 and c=2, thus the answer to the question is YES. Sufficient.

Answer: C.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [65]
17
Kudos
Add Kudos
48
Bookmarks
Bookmark this Post
3. If 0 < x < y and x and y are consecutive perfect squares, what is the remainder when y is divided by x?

Notice that since x and y are consecutive perfect squares, then \(\sqrt{x}\) and \(\sqrt{y}\) are consecutive integers.

(1) Both x and y have 3 positive factors. This statement implies that \(x=(prime_1)^2\) and \(y=(prime_2)^2\). From above we have that \(\sqrt{x}=prime_1\) and \(\sqrt{y}=prime_2\) are consecutive integers. The only two consecutive integers which are primes are 2 and 3. Thus, \(x=(prime_1)^2=4\) and \(y=(prime_2)^2=9\). The remainder when 9 is divided by 4 is 1. Sufficient.

(2) Both \(\sqrt{x}\) and \(\sqrt{y}\) are prime numbers. The same here: \(\sqrt{x}=2\) and \(\sqrt{y}=3\). Sufficient.

Answer: D.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [53]
9
Kudos
Add Kudos
43
Bookmarks
Bookmark this Post
9. If [x] denotes the greatest integer less than or equal to x for any number x, is [a] + [b] = 1 ?

Given that some function [] rounds DOWN a number to the nearest integer. For example [1.5]=1, [2]=2, [-1.5]=-2, ...

(1) ab = 2. First of all this means that a and b are of the same sign.

If both are negative, then the maximum value of [a] + [b] is -2, for any negative a and b. So, this case is out.

If both are positive, then in order [a] + [b] = 1 to hold true, must be true that [a]=0 and [b]=1 (or vise-versa). Which means that \(0\leq{a}<1\) and \(1\leq{b}<2\) (or vise-versa). But in this case ab cannot be equal to 2. So, this case is also out.

We have that the answer to the question is NO. Sufficient.

(2) 0 < a < b < 2. If a=1/2 and b=1, then [a] + [b] = 0 + 1 = 1 but if a=1/4 and b=1/2, then [a] + [b] = 0 + 0 = 0. Not sufficient.

Answer: A.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [48]
17
Kudos
Add Kudos
30
Bookmarks
Bookmark this Post
2. If a positive integer n has exactly two positive factors what is the value of n?

Notice that, n has exactly two positive factors simply means that n is a prime number, so its factors are 1 and n itself.

(1) n/2 is one of the factors of n. Since n/2 cannot equal to n, then n/2=1, thus n=2. Sufficient.

(2) The lowest common multiple of n and n + 10 is an even number. If n is an odd prime, then n+10 is also odd. The LCM of two odd numbers cannot be even, therefore n is an even prime, so 2. Sufficient.

Answer: D.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [43]
5
Kudos
Add Kudos
38
Bookmarks
Bookmark this Post
10. If N = 3^x*5^y, where x and y are positive integers, and N has 12 positive factors, what is the value of N?

\(N = 3^x*5^y\) has 12 positive factors means that (x+1)(y+1)=12=2*6=6*2=3*4=4*3. We can have the following cases:

\(N = 3^1*5^5\);
\(N = 3^5*5^1\);
\(N = 3^2*5^3\);
\(N = 3^3*5^2\).

(1) 9 is NOT a factor of N. This implies that the power of 3 is less than 2, thus N could only be \(3^1*5^5\). Sufficient.

(2) 125 is a factor of N. This implies that the power of 5 is more than or equal to 3, thus N could be \(3^1*5^5\) or \(3^2*5^3\). Not sufficient.

Answer: A.


THEORY.
Finding the Number of Factors of an Integer

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [37]
10
Kudos
Add Kudos
27
Bookmarks
Bookmark this Post
SOLUTIONS:

1. If \(x\) is an integer, what is the value of \(x\)?

(1) \(|23x|\) is a prime number.

Since 23 is a prime number, this statement implies that \(x=1\) or \(x=-1\). Not sufficient.

(2) \(2\sqrt{x^2}\) is a prime number.

We can rewrite the expression as \(2\sqrt{x^2}=2|x|\). Since 2 is a prime number, this statement implies that \(x=1\) or \(x=-1\). Not sufficient.

(1)+(2) Using both conditions, \(x\) could be either 1 or -1. The information provided is still insufficient to determine the exact value of \(x\).


Answer: E
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [33]
9
Kudos
Add Kudos
23
Bookmarks
Bookmark this Post
4. If each digit of the positive three-digit integer \(k\) is a positive multiple of 4, what is the value of \(k\)?

(1) The units digit of \(k\) is the least common multiple of the tens and hundreds digits of \(k\).

Possible values for \(k\) are 444, 488, 848, or 888. Not sufficient.

(2) \(k\) is NOT a multiple of 3.

Possible values for \(k\) are 448, 484, 488, 844, 848, or 884. Not sufficient.

(1)+(2) From the above, \(k\) could be 488 or 848. Still, this is not sufficient.


Answer: E
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
 [10]
3
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
If \(0 \lt x \lt y\) and \(x\) and \(y\) are consecutive perfect squares, what is the remainder when \(y\) is divided by \(x\)?

Notice that since \(x\) and \(y\) are consecutive perfect squares, then \(\sqrt{x}\) and \(\sqrt{y}\) are consecutive integers.

(1) Both \(x\) and \(y\) have 3 positive factors. This statement implies that \(x=(prime_1)^2\) and \(y=(prime_2)^2\). From above we have that \(\sqrt{x}=prime_1\) and \(\sqrt{y}=prime_2\) are consecutive integers. The only two consecutive integers which are primes are 2 and 3. Thus, \(x=(prime_1)^2=4\) and \(y=(prime_2)^2=9\). The remainder when 9 is divided by 4 is 1. Sufficient.

(2) Both \(\sqrt{x}\) and \(\sqrt{y}\) are prime numbers. The same here: \(\sqrt{x}=2\) and \(\sqrt{y}=3\). Sufficient.


Answer: D
General Discussion
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 846
Own Kudos:
5,145
 [2]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 846
Kudos: 5,145
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If x is an integer, what is the value of x?

(1) |23x| is a prime number
Since 23 si prime,\(x\)can be \(+1\) or \(-1\)
not sufficient

(2) 2\sqrt{x^2} is a prime number.
once again \(x\) can be \(+1\) or \(-1\)
not sufficient

And since 1)+2) provides no new info IMO E
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 846
Own Kudos:
5,145
 [4]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 846
Kudos: 5,145
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
6. Set S consists of more than two integers. Are all the numbers in set S negative?

(1) The product of any three integers in the list is negative
Not sufficient
Example: \(S = {-1,3,5}\)
the product is always <0 but 2 numbers are positive
Example: \(S = {-1,-3,-5}\)
the product is always <0 and all numbers are negative

(2) The product of the smallest and largest integers in the list is a prime number.
Not sufficient
Example: \(S = {1,3,5}\)
\(1*5=5\) prime but all positive
Example: S = \({-1,-3,-5}\)
\(-1*-5=5\) prime but all negative

(1)+(2) Sufficient IMO C
Using statement 2 we know that all are positive or all are negative, using statement 1 we know that "at least" 1 is negative=> so all are negative
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 846
Own Kudos:
5,145
 [3]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 846
Kudos: 5,145
 [3]
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
9. If [x] denotes the greatest integer less than or equal to x for any number x, is [a] + [b] = 1 ?

(1) ab = 2
(2) 0 < a < b < 2

The question can be seen as (given statement 2):
\([a] + [b] = 1\)
case 1:\(0<(=)a<1\) => \([a]=0\) and \(1(=)<b<2\) => \([b]=1\) so \([a] + [b] = 1\)
or the opposite
case 2: \(0<(=)b<1\) => \([b]=0\) and \(1(=)<a<2\) => \([a]=1\) so \([a] + [b] = 1\)

But as ab=2 we know that one term is \(\frac{1}{2}\) and the other is \(2\)
So we are in one of the two senarios above, IMO C
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 846
Own Kudos:
5,145
 [2]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 846
Kudos: 5,145
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
10. If N = 3^x*5^y, where x and y are positive integers, and N has 12 positive factors, what is the value of N?

Number of factors of \(N = (x+1)(y+1) = 12\)
the combinations are
\(3*4\) with \(x= 2\) and \(y=3\)
\(6*2\) with \(x=5\) and\(y = 1\)
and the "other way round" of each one

(1) 9 is NOT a factor of N
So x must be 1, \(x=1\)
because \((1+1)(y+1)=12\)
\(y=5\)
Sufficient

(2) 125 is a factor of N
So \(y>=3\), y can be 3 or 5, NOT sufficient
\(y=3, (3+1)(x+1)=12, x=2\)
\(y=5, (5+1)(x+1)=12, x=1\)

IMO A
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 846
Own Kudos:
5,145
 [3]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 846
Kudos: 5,145
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
8. Set A consist of 10 terms, each of which is a reciprocal of a prime number, is the median of the set less than 1/5?

(1) Reciprocal of the median is a prime number
Not sufficient

(2) The product of any two terms of the set is a terminating decimal
Because \(\frac{1}{prime}\) is not a terminating decimal, with the only exception of 1/4, 1/1, 1/5 and 1/2
any set made by these three CANNOT have a median < 1/5, it can be = 1/5 but NEVER <
Some examples:
A={1,1,1,1,1/5,1/5,1/5,1/5,1/5,1/5} the median is 1/5 = 1/5
A={1,1,1,1,1/2,1/2,1/2,1/2,1/2,1/2} the median is 1/2 > 1/5
SUFFICIENT

IMO B
User avatar
mau5
User avatar
Verbal Forum Moderator
Joined: 10 Oct 2012
Last visit: 31 Dec 2024
Posts: 479
Own Kudos:
3,340
 [3]
Given Kudos: 141
Posts: 479
Kudos: 3,340
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
11. If x and y are positive integers, is x a prime number?

(1) |x - 2| < 2 - y
(2) x + y - 3 = |1-y|

We know that x >0 and y>0 and they are integers.

From F.S 1, we have 2-y>=0 or y<=2. Thus y can only be 2 or 1. Now if y=2, we would have 0>some thing positive or 0>0(when x also equal to 2). Either case is not possible. Thus, y can only be 1. For y=1, we can only have x = 2. Which is prime. Sufficient.

From F.S 2, we have either y>1 or y<1. Now as y is a positive integer, y can't be less than 1.For y=1, we anyways have x=2(prime).In the first case, we have y>1--> x+y-3 = y-1 or x=2(prime). Thus, Sufficient.

D.
User avatar
mau5
User avatar
Verbal Forum Moderator
Joined: 10 Oct 2012
Last visit: 31 Dec 2024
Posts: 479
Own Kudos:
3,340
 [2]
Given Kudos: 141
Posts: 479
Kudos: 3,340
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
7.Is x the square of an integer?

(1) When x is divided by 12 the remainder is 6
(2) When x is divided by 14 the remainder is 2

From F.S 1, we have x = 12q+6 --> 6(2q+1). For x to be a square of an integer, we should have 2q+1 of the form 6^pk^2, where both q,p and k are integers and p is odd. Now we know that 2q+1 is an odd number and 6^pk^2 is even. Thus they can never be equal and hence x can never be the square of an integer. Sufficient.

From F.S 2, we have x = 14q+2 --> 2(7q+1).Just as above, we should have 7q+1 = 2^pk^2. Now for q=1, k=2 and p=1, we have 8=8, thus x is the square of an integer. But for q=0, x is not. Insufficient.

Basically for the second fact statement, we can plug in easily. No need for the elaborate theory.

A.
 1   2   3   4   
Moderators:
Math Expert
105390 posts
496 posts