Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 59561

In the figure above, what is the area of the shaded region?
[#permalink]
Show Tags
05 Sep 2017, 23:53
Question Stats:
72% (01:40) correct 28% (01:42) wrong based on 108 sessions
HideShow timer Statistics
In the figure above, what is the area of the shaded region? (A) 5/36 (B) 5/18 (C) 1/3 (D) 5/12 (E) 5/6 Attachment:
20170906_1052.png [ 5.16 KiB  Viewed 6134 times ]
Official Answer and Stats are available only to registered users. Register/ Login.



Current Student
Joined: 02 Jul 2017
Posts: 280
Concentration: Entrepreneurship, Technology

In the figure above, what is the area of the shaded region?
[#permalink]
Show Tags
Updated on: 06 Sep 2017, 00:26
We have to find area of shaded region. area of shaded region = Area of big triangle  area of small triangle. ie area of shaded region = Area( Triangle ABC)  Area( Triangle ADE) < Refer attached figure As both triangles are right triangle and both have an angle common ( Angle A) =>Big triangle is similar to small triangle => triangle ABC ~ triangle ADE Area formula for 2 similar triangles => \(\frac{Ar(ABC)}{Ar(ADE)} = \frac{AB^2}{AD^2} = \frac{BC^2}{DE^2} = \frac{AC^2}{AE^2}\) Ar(ABC) = 1/2 *1*1 = 1/2 BC=1 DE=2/3 =>\(\frac{Ar(ABC)}{Ar(ADE)} = \frac{1^2}{(2/3)^2}\) => Ar(ADE)= Ar(ABC)* 4/9 = 1/2 * 4/9 = 2/9 Area of shaded region = Ar(ABC)  Ar(ADE) = 1/2 2/9 =5/18 Answer: B
Attachments
Shaded area.jpg [ 25.54 KiB  Viewed 4771 times ]
Originally posted by Nikkb on 06 Sep 2017, 00:12.
Last edited by Nikkb on 06 Sep 2017, 00:26, edited 1 time in total.



Current Student
Joined: 18 Aug 2016
Posts: 594
Concentration: Strategy, Technology
GMAT 1: 630 Q47 V29 GMAT 2: 740 Q51 V38

Re: In the figure above, what is the area of the shaded region?
[#permalink]
Show Tags
06 Sep 2017, 00:22
Bunuel wrote: In the figure above, what is the area of the shaded region? (A) 5/36 (B) 5/18 (C) 1/3 (D) 5/12 (E) 5/6 Attachment: 20170906_1052.png Divide the shaded region into one triangle on the top with (12/3) = 1/3 height and x as base area of triangle will be 1/3x area of rectangle with 2/3 length and x width will be 2/3x area of shaded region = 5/6x 5/6x + (1x)*1/3 = 1/2 3x/6 = 1/6 x=1/3 5/6*1/3 = 5/18 B
_________________
We must try to achieve the best within us
Thanks Luckisnoexcuse



Senior PS Moderator
Joined: 26 Feb 2016
Posts: 3300
Location: India
GPA: 3.12

In the figure above, what is the area of the shaded region?
[#permalink]
Show Tags
06 Sep 2017, 00:41
Attachment:
20170906_1052.png [ 6.09 KiB  Viewed 4749 times ]
In the figure, ABC is a right angled isosceles triangle, as AB = BC = 1 The triangle ABC is similar to ADE(AA similarity) It has been given that DE = \(\frac{2}{3}\). Similarly, AD = \(\frac{2}{3}\) (sides opposite equal angles are equal) Area of triangle ABC = \(\frac{1}{2}*1*1 = \frac{1}{2}\) Area of triangle ADE = \(\frac{1}{2}*(\frac{2}{3})^2 = \frac{2}{9}\) Therefore, are of shaded region is \(\frac{1}{2}  \frac{2}{9} = \frac{(94)}{18} = \frac{5}{18}\) (Option B)
_________________
You've got what it takes, but it will take everything you've got



Director
Affiliations: IIT Dhanbad
Joined: 13 Mar 2017
Posts: 730
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)

Re: In the figure above, what is the area of the shaded region?
[#permalink]
Show Tags
06 Sep 2017, 03:52
Bunuel wrote: In the figure above, what is the area of the shaded region? (A) 5/36 (B) 5/18 (C) 1/3 (D) 5/12 (E) 5/6 Attachment: 20170906_1052.png Since the unshaded triangle and the whole triangle are similar . Ratio of their area = (2/3)^2 = 4/9 Ratio of area of shaded region to full triangle = 14/9 = 5/9 Area of complete triangle = 1/2*1*1 = 1/2 Area of shaded region = 5/9 *1/2 = 5/18 Answer B



Senior SC Moderator
Joined: 22 May 2016
Posts: 3723

In the figure above, what is the area of the shaded region?
[#permalink]
Show Tags
06 Sep 2017, 14:28
pushpitkc wrote: Attachment: 20170906_1052.png In the figure, ABC is a right angled isosceles triangle, as AB = BC = 1 The triangle ABC is similar to ADE(AA similarity) It has been given that DE = \(\frac{2}{3}\). Similarly, AD = \(\frac{2}{3}\) (sides opposite equal angles are equal) Area of triangle ABC = \(\frac{1}{2}*1*1 = \frac{1}{2}\) Area of triangle ADE = \(\frac{1}{2}*(\frac{2}{3})^2 = \frac{2}{9}\) Therefore, are of shaded region is \(\frac{1}{2}  \frac{2}{9} = \frac{(94)}{18} = \frac{5}{18}\) (Option B)(E) 5/6 Attachment: 20170906_1052.png pushpitkc , (and the rest of the posters, all of whom used triangles' similarity or assumed right angles at some point), I don't think we know we have two right angles. We are not told that the two vertical lines are parallel. If the two vertical lines were parallel, then the transversal which forms the base of both triangles, and which would cut the parallel lines, would create two congruent right angles. We know from the diagram's mark that one angle is a right angle. That angle and the unmarked angle at the smaller triangle's base would be corresponding angles created by parallel lines cut by a transversal, and would be congruent. In that case, the small and large triangles would share a right angle and a vertex angle, and by AA property of triangles, the triangles would be similar. We are not told that the shorter vertical line is perpendicular to the horizontal line. Same result as above, i.e., if short vertical line were perpendicular to base, triangles would be similar. Nor does the figure display a right angle mark where the shorter vertical line meets the base to create a small triangle with one side of length \(\frac{2}{3}\). It seems all we know is that the two triangles share one angle, at the vertex on the left. The short vertical line might not be vertical. I'm not sure how we can conclude that the triangles are similar. Am I missing something?
_________________
SC Butler has resumed! Get two SC questions to practice, whose links you can find by date, here.Never doubt that a small group of thoughtful, committed citizens can change the world; indeed, it's the only thing that ever has  Margaret Mead



Director
Affiliations: IIT Dhanbad
Joined: 13 Mar 2017
Posts: 730
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)

Re: In the figure above, what is the area of the shaded region?
[#permalink]
Show Tags
07 Sep 2017, 00:10
genxer123 wrote: pushpitkc wrote: Attachment: 20170906_1052.png In the figure, ABC is a right angled isosceles triangle, as AB = BC = 1 The triangle ABC is similar to ADE(AA similarity) It has been given that DE = \(\frac{2}{3}\). Similarly, AD = \(\frac{2}{3}\) (sides opposite equal angles are equal) Area of triangle ABC = \(\frac{1}{2}*1*1 = \frac{1}{2}\) Area of triangle ADE = \(\frac{1}{2}*(\frac{2}{3})^2 = \frac{2}{9}\) Therefore, are of shaded region is \(\frac{1}{2}  \frac{2}{9} = \frac{(94)}{18} = \frac{5}{18}\) (Option B)(E) 5/6 Attachment: 20170906_1052.png pushpitkc , (and the rest of the posters, all of whom used triangles' similarity or assumed right angles at some point), I don't think we know we have two right angles. We are not told that the two vertical lines are parallel. If the two vertical lines were parallel, then the transversal which forms the base of both triangles, and which would cut the parallel lines, would create two congruent right angles. We know from the diagram's mark that one angle is a right angle. That angle and the unmarked angle at the smaller triangle's base would be corresponding angles created by parallel lines cut by a transversal, and would be congruent. In that case, the small and large triangles would share a right angle and a vertex angle, and by AA property of triangles, the triangles would be similar. We are not told that the shorter vertical line is perpendicular to the horizontal line. Same result as above, i.e., if short vertical line were perpendicular to base, triangles would be similar. Nor does the figure display a right angle mark where the shorter vertical line meets the base to create a small triangle with one side of length \(\frac{2}{3}\). It seems all we know is that the two triangles share one angle, at the vertex on the left. The short vertical line might not be vertical. I'm not sure how we can conclude that the triangles are similar. Am I missing something? genxer123 , You are 100% correct. There is no mention of shorter line being parallel to the larger line in the shaded region. We just assumed it to be parallel and solved the question which is not at all acceptable on GMAT. Also there were option available, so we just solved it. Had it been a data sufficiency question, then the situation could have created a real problem. So the question should say that smaller line is parallel to longer line...



Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8605
Location: United States (CA)

Re: In the figure above, what is the area of the shaded region?
[#permalink]
Show Tags
11 Sep 2017, 11:02
Bunuel wrote: In the figure above, what is the area of the shaded region? (A) 5/36 (B) 5/18 (C) 1/3 (D) 5/12 (E) 5/6 Attachment: 20170906_1052.png We see that we have two similar triangles. The ratio of the side length of the larger triangle to the smaller triangle is 1/(2/3). Since the base and height of the larger triangle is 1, the base and height of the smaller triangle is 2/3. Thus, the area of the larger triangle is 1 x 1 x 1/2 = ½ and the area of the smaller triangle is 2/3 x 2/3 x 1/2 = 4/18. So, the area of the shaded region is 1/2  4/18 = 9/18  4/18 = 5/18. Answer: B
_________________
5star rated online GMAT quant self study course See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews If you find one of my posts helpful, please take a moment to click on the "Kudos" button.



NonHuman User
Joined: 09 Sep 2013
Posts: 13710

Re: In the figure above, what is the area of the shaded region?
[#permalink]
Show Tags
19 Sep 2018, 10:22
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________




Re: In the figure above, what is the area of the shaded region?
[#permalink]
19 Sep 2018, 10:22






