mariyea
Bunuel
Is 1/x^5 > y/(y^6+1)?
(1) x=y --> is \(\frac{1}{y^5}>\frac{y}{y^6+1}\)? Two cases:
A. \(y<0\)--> cross multiply and as for negative \(y\): \(y^5<0\) and \(y^6+1>0\) flip the sign (because of negative \(y^5\)). The question becomes: is \(y^6+1<y^6\)? --> is \(1<0\)? In this case the answer would be NO.
B. \(y>0\) --> cross multiply and as for positive \(y\) both \(y^5\) and \(y^6+1\) are positive remain the sign. The question becomes: is \(y^6+1>y^6\)? --> is \(1>0\)? In this case the answer would be YES.
(2) y>0. Clearly insufficient as no info about \(x\).
(1)+(2) As from (2) \(y>0\) then we have case B and the answer is YES. Sufficient.
Answer: C.
In A, are you asking us to consider y being negative or did you derive it. Consideration would make sense to me, but I'm just trying to learn for the future. Sorry to be asking all this simple questions, but I just need to know. Thank you Bunuel!
Mari
We should determine whether \(\frac{1}{y^5}>\frac{y}{y^6+1}\) is true. You can do this algebraically or with number plugging (for example test y=1 to get YES and then y=-1 to get NO).
As for algebraic approach: we should somehow simplify \(\frac{1}{y^5}>\frac{y}{y^6+1}\) (as it looks kind of ugly) to get the answer. For this we
consider two cases: \(y<0\) and \(y>0\) (y=0 is not possible as y is in denominator and we know that division by zero is undefined). As we proceed, we get NO answer for an assumption \(y<0\) and we get YES answer for an assumption \(y>0\).
Hope it's clear.