GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 28 Jan 2020, 10:29 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5

Author Message
TAGS:

### Hide Tags

Intern  Joined: 16 Jun 2013
Posts: 9
Schools: Mays '17
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

1
sevaro wrote:
Is x>1?

(1) (x+1)(|x|-1) > 0
(2) |x|<5

I got it right plugging in number. Any other options?

Thanks

This question is rated as hard by GMAC.

ST1: When x > 0 we have: (x+1)(x-1) > 0 then x^2 - 1 > 0 --> x^2 > 1 ==> x < -1 or x > 1, because x > 0 then x > 1
When x < 0 we have: -(x+1)(x+1) > 0 ~ - (x+1)^2 > 0 not existed.
SUFFICIENT.
ST2: -5 < x < 5. INSUFFICIENT.
Veritas Prep GMAT Instructor V
Joined: 16 Oct 2010
Posts: 10027
Location: Pune, India
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

4
sevaro wrote:
Is x>1?

(1) (x+1)(|x|-1) > 0
(2) |x|<5

I got it right plugging in number. Any other options?

Thanks

This question is rated as hard by GMAC.

Question: Is x > 1?

(1) $$(x+1)(|x|-1) > 0$$
For the left hand side to be positive, either both factors are positive or both are negative.

If both are positive,
x+1 > 0, x > -1
AND
|x|-1 > 0, |x|> 1 which means either x < -1 or x > 1
This is possible only when x > 1

If both are negative,
x+1 < 0, x < -1
AND
|x|-1 < 0, |x| < 1 which means -1 < x < 1
Both these conditions cannot be met and hence this is not possible.

This gives us only one solution: x > 1

(2) $$|x|<5$$
This implies that -5 < x < 5
x may be less than or more than 1. Not sufficient.

_________________
Karishma
Veritas Prep GMAT Instructor

Manager  Joined: 20 Dec 2013
Posts: 115
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

1
enigma123 wrote:
Is x > 1?

(1) (x+1) (|x| - 1) > 0

(2) |x| < 5

You have to remember Z O N E D (Zero, One, Negative, Extremes, Decimals)

Statement I is sufficient:

We cannot plug in zero and 1 as the expression (x+1) (|x| - 1) will not hold true. All numbers greater than 1 will hold true for the expression. All decimals and negative numbers will make the expression negative.

Hence the value of x will always be greater than 1.

Statement II is insufficient:

x = 4 (YES) and x = -2 (NO)

_________________
76000 Subscribers, 7 million minutes of learning delivered and 5.6 million video views

Perfect Scores
http://perfectscores.org
Intern  Joined: 17 Oct 2013
Posts: 37
Location: India
Concentration: Strategy, Statistics
Schools: ISB '17 (A)
GMAT 1: 730 Q49 V40
WE: Analyst (Computer Software)
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If $$x>0$$ then $$|x|=x$$ so $$(x+1) (|x| - 1) > 0$$ becomes $$(x+1) (x - 1) > 0$$ --> $$x^2-1>0$$ --> $$x^2>1$$ --> $$x<-1$$ or $$x>1$$. Since we consider range when $$x>0$$ then we have $$x>1$$ for this case;

If $$x\leq{0}$$ then $$|x|=-x$$ so $$(x+1) (|x| - 1) > 0$$ becomes $$(x+1) (-x - 1) > 0$$ --> $$-(x+1) (x+1) > 0$$ --> $$-(x+1)^2>0$$ --> $$(x+1)^2<0$$. Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that $$(x+1) (|x| - 1) > 0$$ holds true only when $$x>1$$. Sufficient.

(2) |x| < 5 --> $$-5<x<5$$. Not sufficient.

Hope it's clear.

Thanks Bunnel.
I have a question regarding the modulus of X.
|X| = -X when X<= 0
|X| = X when X> 0
Which range does zero belong to? Since we know the result in the end solely depends on whether the absolute value of x (whether it is positive or negative) and zero is rather inconsequential in deciding whether |X| is to become -X or +X.
So, is
|X| = -X when X< 0
|X| = X when X >= 0 wrong? (if you observe I have swapped the equal to zero sign from the negative to the positive case)

So where exactly does zero fall in a modulus scenario? It is important because it decides whether the values on the verge of the range are considered in the solution set or not.
Hope the description of my question is clear enough!

My guess is that we will need to plug in the values on the edges of the range and then decide where the zero falls (or rather which values are to be considered)
Math Expert V
Joined: 02 Sep 2009
Posts: 60727
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Kconfused wrote:
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If $$x>0$$ then $$|x|=x$$ so $$(x+1) (|x| - 1) > 0$$ becomes $$(x+1) (x - 1) > 0$$ --> $$x^2-1>0$$ --> $$x^2>1$$ --> $$x<-1$$ or $$x>1$$. Since we consider range when $$x>0$$ then we have $$x>1$$ for this case;

If $$x\leq{0}$$ then $$|x|=-x$$ so $$(x+1) (|x| - 1) > 0$$ becomes $$(x+1) (-x - 1) > 0$$ --> $$-(x+1) (x+1) > 0$$ --> $$-(x+1)^2>0$$ --> $$(x+1)^2<0$$. Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that $$(x+1) (|x| - 1) > 0$$ holds true only when $$x>1$$. Sufficient.

(2) |x| < 5 --> $$-5<x<5$$. Not sufficient.

Hope it's clear.

Thanks Bunnel.
I have a question regarding the modulus of X.
|X| = -X when X<= 0
|X| = X when X> 0
Which range does zero belong to? Since we know the result in the end solely depends on whether the absolute value of x (whether it is positive or negative) and zero is rather inconsequential in deciding whether |X| is to become -X or +X.
So, is
|X| = -X when X< 0
|X| = X when X >= 0 wrong? (if you observe I have swapped the equal to zero sign from the negative to the positive case)

So where exactly does zero fall in a modulus scenario? It is important because it decides whether the values on the verge of the range are considered in the solution set or not.
Hope the description of my question is clear enough!

My guess is that we will need to plug in the values on the edges of the range and then decide where the zero falls (or rather which values are to be considered)

You can include 0 in either of the ranges:

When $$x\leq{0}$$ then $$|x|=-x$$, or more generally when $$some \ expression\leq{0}$$ then $$|some \ expression|={-(some \ expression)}$$. For example: $$|-5|=5=-(-5)$$.

When $$x\geq{0}$$ then $$|x|=x$$, or more generally when $$some \ expression\geq{0}$$ then $$|some \ expression|={some \ expression}$$. For example: $$|5|=5$$.

The point is that |0|=0, so it doesn't matter in which range you include it.

_________________
Senior Manager  B
Joined: 04 Jul 2014
Posts: 293
Location: India
GMAT 1: 640 Q47 V31
GMAT 2: 640 Q44 V34
GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0
2) x-1 > 0
3) -x-1 > 0

If correct, could you please demonstrate on how to proceed?
Math Expert V
Joined: 02 Sep 2009
Posts: 60727
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

1
joseph0alexander wrote:
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0
2) x-1 > 0
3) -x-1 > 0

If correct, could you please demonstrate on how to proceed?

This would not the best approach. You should consider two cases for |x|: when x<0, then |x| = x and when x>0, then |x| = -x. As well as two cases when (x+1) and (|x| - 1) are both positive and both negative.
_________________
Senior Manager  B
Joined: 04 Jul 2014
Posts: 293
Location: India
GMAT 1: 640 Q47 V31
GMAT 2: 640 Q44 V34
GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Bunuel wrote:
joseph0alexander wrote:
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0 ---> x > -1
2) x-1 > 0 ---> x > 1
3) -x-1 > 0 ---> -x > 1 or x > -1

If correct, could you please demonstrate on how to proceed?

This would not the best approach. You should consider two cases for |x|: when x<0, then |x| = x and when x>0, then |x| = -x. As well as two cases when (x+1) and (|x| - 1) are both positive and both negative.

Fair enough Bunuel, but just for the sake of understanding and learning the concept.

If we proceed with the 3 equations, I am getting the results in red above. Comparing them, we can take the greatest limiting factor, which is x>1, and prove sufficiency. I find this approach a little easier. Is my arithmetic correct?

Thank you. Math Expert V
Joined: 02 Sep 2009
Posts: 60727
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

joseph0alexander wrote:
Bunuel wrote:
joseph0alexander wrote:
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0 ---> x > -1
2) x-1 > 0 ---> x > 1
3) -x-1 > 0 ---> -x > 1 or x > -1

If correct, could you please demonstrate on how to proceed?

This would not the best approach. You should consider two cases for |x|: when x<0, then |x| = x and when x>0, then |x| = -x. As well as two cases when (x+1) and (|x| - 1) are both positive and both negative.

Fair enough Bunuel, but just for the sake of understanding and learning the concept.

If we proceed with the 3 equations, I am getting the results in red above. Comparing them, we can take the greatest limiting factor, which is x>1, and prove sufficiency. I find this approach a little easier. Is my arithmetic correct?

Thank you. Again you should consider 2*2 = 4 cases.

(x+1)(|x| - 1) > 0.

1. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) > 0 and (-x - 1) > 0 --> x > -1 and x < -1. No solution here.

2. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

3. x > 0 --> (x+1)(x - 1) > 0.

(x + 1) > 0 and (x - 1) > 0 --> x > -1 and x > 1. This gives x > 1.

4. x > 0 --> (x+1)(x - 1) < 0.

(x + 1) < 0 and (x - 1) < 0 --> x < -1 and x < 1. No solution here.

So, (x+1)(|x| - 1) > 0 holds true only when x > 1.

Hope it's clear.
_________________
Senior Manager  B
Joined: 04 Jul 2014
Posts: 293
Location: India
GMAT 1: 640 Q47 V31
GMAT 2: 640 Q44 V34
GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Bunuel wrote:
Again you should consider 2*2 = 4 cases.

(x+1)(|x| - 1) > 0.

1. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) > 0 and (-x - 1) > 0 --> x > -1 and x < -1. No solution here.

2. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

3. x > 0 --> (x+1)(x - 1) > 0.

(x + 1) > 0 and (x - 1) > 0 --> x > -1 and x > 1. This gives x > 1.

4. x < 0 --> (x+1)(-x - 1) < 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

So, (x+1)(|x| - 1) > 0 holds true only when x > 1.

Hope it's clear.

Hi Bunuel,

Kindly pardon me. I am unable to understand your explanation. Could you please explain how you arrived at the 4 equations? I think the 4 cases have come up because x could be either positive or negative. Is it so?

Further you've mentioned that we've to consider 2x2 cases. I understand that you have taken 3 cases where x < 0 and 1 case where x > 0. I'm totally lost now. Please help! Math Expert V
Joined: 02 Sep 2009
Posts: 60727
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

joseph0alexander wrote:
Bunuel wrote:
Again you should consider 2*2 = 4 cases.

(x+1)(|x| - 1) > 0.

1. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) > 0 and (-x - 1) > 0 --> x > -1 and x < -1. No solution here.

2. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

3. x > 0 --> (x+1)(x - 1) > 0.

(x + 1) > 0 and (x - 1) > 0 --> x > -1 and x > 1. This gives x > 1.

4. x < 0 --> (x+1)(-x - 1) < 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

So, (x+1)(|x| - 1) > 0 holds true only when x > 1.

Hope it's clear.

Hi Bunuel,

Kindly pardon me. I am unable to understand your explanation. Could you please explain how you arrived at the 4 equations? I think the 4 cases have come up because x could be either positive or negative. Is it so?

Further you've mentioned that we've to consider 2x2 cases. I understand that you have taken 3 cases where x < 0 and 1 case where x > 0. I'm totally lost now. Please help! I had typos there. Edited now. Anyway the point is that we consider two cases for |x| and then two cases for the multiples both negative and both positive.
_________________
Senior Manager  B
Joined: 04 Jul 2014
Posts: 293
Location: India
GMAT 1: 640 Q47 V31
GMAT 2: 640 Q44 V34
GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Bunuel wrote:
I had typos there. Edited now. Anyway the point is that we consider two cases for |x| and then two cases for the multiples both negative and both positive.

Thanks Bunuel. Understand it now much better. Reading your post along with this one is-x-134652-20.html#p1373275 from VeritasPrepKarishma helped. Manager  B
Joined: 27 Aug 2014
Posts: 64
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If $$x>0$$ then $$|x|=x$$ so $$(x+1) (|x| - 1) > 0$$ becomes $$(x+1) (x - 1) > 0$$ --> $$x^2-1>0$$ --> $$x^2>1$$ --> $$x<-1$$ or $$x>1$$. Since we consider range when $$x>0$$ then we have $$x>1$$ for this case;

If $$x\leq{0}$$ then $$|x|=-x$$ so $$(x+1) (|x| - 1) > 0$$ becomes $$(x+1) (-x - 1) > 0$$ --> $$-(x+1) (x+1) > 0$$ --> $$-(x+1)^2>0$$ --> $$(x+1)^2<0$$. Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that $$(x+1) (|x| - 1) > 0$$ holds true only when $$x>1$$. Sufficient.

(2) |x| < 5 --> $$-5<x<5$$. Not sufficient.

Hope it's clear.

Hi Bunuel

Why are we not changing the inequality sign in statement 1 when we assume x is negative-ideally we should. In that case, we get x<-1 from -(x+1)^2<0 as one of (x+1) can be eliminated.
Math Expert V
Joined: 02 Sep 2009
Posts: 60727
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

sinhap07 wrote:
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If $$x>0$$ then $$|x|=x$$ so $$(x+1) (|x| - 1) > 0$$ becomes $$(x+1) (x - 1) > 0$$ --> $$x^2-1>0$$ --> $$x^2>1$$ --> $$x<-1$$ or $$x>1$$. Since we consider range when $$x>0$$ then we have $$x>1$$ for this case;

If $$x\leq{0}$$ then $$|x|=-x$$ so $$(x+1) (|x| - 1) > 0$$ becomes $$(x+1) (-x - 1) > 0$$ --> $$-(x+1) (x+1) > 0$$ --> $$-(x+1)^2>0$$ --> $$(x+1)^2<0$$. Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that $$(x+1) (|x| - 1) > 0$$ holds true only when $$x>1$$. Sufficient.

(2) |x| < 5 --> $$-5<x<5$$. Not sufficient.

Hope it's clear.

Hi Bunuel

Why are we not changing the inequality sign in statement 1 when we assume x is negative-ideally we should. In that case, we get x<-1 from -(x+1)^2<0 as one of (x+1) can be eliminated.

$$-(x+1)^2>0$$;

Add (x+1)^2 to both sides: $$0>(x+1)^2$$, which is the same as $$(x+1)^2<0$$.
_________________
Manager  Joined: 07 Dec 2009
Posts: 84
GMAT Date: 12-03-2014
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

1
Is x > 1?

I would approach it the following way :

(1) (x+1) (|x| - 1) > 0

(+) * (+) > 0 or (-) * (-) > 0

For both of the parts to be positive we can see that x >1 . Just by trying few values you can figure this out. X cant be Zero as then the second part becomes - . X cant be 1 as then second part becomes 0 and hence the whole LHS becomes Zero.

For both of the parts to be negative we try any value less an Zero and see that no value will satisfy the equation. Hence X cannot be negative.. Hence A is Sufficient.

(2) |x| < 5

Clearly not sufficient

Manager  S
Joined: 11 Sep 2013
Posts: 131
Concentration: Finance, Finance
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Ans A: Better approach for me will be to try with some common numbers quickly. -1.5, 0.5, 0, 0.5 , 1.5
Current Student B
Status: :)
Joined: 29 Jun 2010
Posts: 98
WE: Information Technology (Consulting)
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Is X > 1 ?

1) (X+1) (|X| -1 ) >0

2) |X| <5

Starting with 2) -5 < X < 5 .hence clearly not sufficient .

However, i am not sure how to go about the 1st one .
CEO  S
Joined: 20 Mar 2014
Posts: 2550
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44 GPA: 3.7
WE: Engineering (Aerospace and Defense)
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

1
gmatcracker24 wrote:
Is X > 1 ?

1) (X+1) (|X| -1 ) >0

2) |X| <5

Starting with 2) -5 < X < 5 .hence clearly not sufficient .

However, i am not sure how to go about the 1st one .

Search for a question before posting a new topic. The question would have been discussed already.

As for the question,

Per statement 1, (x+1)(|x|-1) >0

Case 1: for x $$\geq$$ 0 ---> |x| = x ----> (x+1)(x-1) > 0 ----> x>1 or x<-1 but as x $$\geq$$ 0 ---> only possible case is x>1

Case 2: for x<0 ---> |x|=-x ---> (x+1)(-x-1)>0 ----> $$-(x+1)^2 > 0$$ ---> $$(x+1)^2<0$$ . Now a square can never be <0 and thus x can not be negative.

Thus the only possible case from statement 1 is for x $$\geq$$ 0 which gives a definite "yes" for x>1.

Hence A is the correct answer.
Retired Moderator Joined: 29 Oct 2013
Posts: 248
Concentration: Finance
GPA: 3.7
WE: Corporate Finance (Retail Banking)
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Here is my solution attached
Attachments Capture.PNG [ 735.37 KiB | Viewed 1222 times ]

_________________

My journey V46 and 750 -> http://gmatclub.com/forum/my-journey-to-46-on-verbal-750overall-171722.html#p1367876
Intern  Joined: 05 Jun 2015
Posts: 24
Location: Viet Nam
GMAT 1: 740 Q49 V41
GPA: 3.66
Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  [#permalink]

### Show Tags

Hi Bunuel,

I have a question.

(x+1)(|x|-1)=0 has x=1 and x=-1 as its solution. However, x=-1 is a repeated root. Hence, on the number line, the sign will not change when it passes x=-1.

--------(-1)---------(1)+++++++

Therefore, only when x>1, (x+1)(|x|-1)>0.

Is my solution correct? I remember my highschool math teacher said something like 'the sign doesn't change when it passes a double root'. But, it's years ago and I just want to make sure that the approach is valid.

Thank you! Re: Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5   [#permalink] 12 Mar 2016, 00:45

Go to page   Previous    1   2   3    Next  [ 43 posts ]

Display posts from previous: Sort by

# Is x > 1? (1) (x+1)(|x| - 1) > 0 (2) |x| < 5  