It is currently 23 Nov 2017, 06:15

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

M07-12

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42326

Kudos [?]: 133106 [0], given: 12411

M07-12 [#permalink]

Show Tags

New post 16 Sep 2014, 00:34
Expert's post
14
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

57% (01:18) correct 43% (01:46) wrong based on 130 sessions

HideShow timer Statistics

If Ben were to lose the championship, Mike would be the winner with a probability of \(\frac{1}{4}\), and Rob - \(\frac{1}{3}\) . If the probability of Ben being the winner is \(\frac{1}{7}\), what is the probability that either Mike or Rob will win the championship? Assume that there can be only one winner.

A. \(\frac{1}{12}\)
B. \(\frac{1}{7}\)
C. \(\frac{1}{2}\)
D. \(\frac{7}{12}\)
E. \(\frac{6}{7}\)
[Reveal] Spoiler: OA

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 133106 [0], given: 12411

Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42326

Kudos [?]: 133106 [2], given: 12411

Re M07-12 [#permalink]

Show Tags

New post 16 Sep 2014, 00:34
2
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
Official Solution:

If Ben were to lose the championship, Mike would be the winner with a probability of \(\frac{1}{4}\), and Rob - \(\frac{1}{3}\) . If the probability of Ben being the winner is \(\frac{1}{7}\), what is the probability that either Mike or Rob will win the championship? Assume that there can be only one winner.

A. \(\frac{1}{12}\)
B. \(\frac{1}{7}\)
C. \(\frac{1}{2}\)
D. \(\frac{7}{12}\)
E. \(\frac{6}{7}\)


This is a conditional probability question. We need the probability that either Mike or Rob will win the championship. So Ben must lose: the probability of Ben losing is \(1-\frac{1}{7}=\frac{6}{7}\).

Now out of these \(\frac{6}{7}\) cases the probability of Mike winning is \(\frac{1}{4}\) and the probability of Rob winning is \(\frac{1}{3}\). So \(P=\frac{6}{7}(\frac{1}{4}+\frac{1}{3})=\frac{1}{2}\).

Or consider the following:

Take 84 championships/cases (I chose 84 as it's a LCM of 3, 4, and 7).

Now, out of these 84 cases Ben will lose in \(\frac{6}{7}*84=72\). Mike would be the winner in \(72*\frac{1}{4}=18\) (1/4 th of the cases when Ben loses) and Rob would be the winner in \(72*\frac{1}{3}=24\). Therefore \(P=\frac{18+24}{84}=\frac{1}{2}\).


Answer: C
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 133106 [2], given: 12411

Intern
Intern
avatar
Joined: 19 Aug 2014
Posts: 4

Kudos [?]: 6 [0], given: 21

GMAT ToolKit User
Re M07-12 [#permalink]

Show Tags

New post 03 Feb 2015, 13:47
I think this question is good and helpful.
Please edit the question prompt. It looks like Rob's probability of winning is -(1/3)

Kudos [?]: 6 [0], given: 21

1 KUDOS received
Intern
Intern
avatar
B
Joined: 09 Feb 2015
Posts: 20

Kudos [?]: 19 [1], given: 677

GMAT ToolKit User
M07-12 [#permalink]

Show Tags

New post 25 Jun 2015, 23:08
1
This post received
KUDOS
Dear Bunuel,
Here is my solution,
P(Mike win) = 6/7*1/4*2/3
P(Rob win) = 6/7*1/3*3/4
=> P(Mike win or Rob win) = 6/7*1/4*2/3 + 6/7*1/3*3/4 = 5/14
How is my solution wrong?
I don't understand why P=6/7(1/4+1/3), The question is either Mike or Rob will win
Please help me.

Kudos [?]: 19 [1], given: 677

1 KUDOS received
Senior Manager
Senior Manager
User avatar
B
Joined: 01 Nov 2013
Posts: 343

Kudos [?]: 233 [1], given: 403

GMAT 1: 690 Q45 V39
WE: General Management (Energy and Utilities)
Reviews Badge
M07-12 [#permalink]

Show Tags

New post 30 Jun 2015, 12:18
1
This post received
KUDOS
Bunuel wrote:
Official Solution:

If Ben were to lose the championship, Mike would be the winner with a probability of \(\frac{1}{4}\), and Rob - \(\frac{1}{3}\) . If the probability of Ben being the winner is \(\frac{1}{7}\), what is the probability that either Mike or Rob will win the championship? Assume that there can be only one winner.

A. \(\frac{1}{12}\)
B. \(\frac{1}{7}\)
C. \(\frac{1}{2}\)
D. \(\frac{7}{12}\)
E. \(\frac{6}{7}\)


This is a conditional probability question. We need the probability that either Mike or Rob will win the championship. So Ben must lose: the probability of Ben losing is \(1-\frac{1}{7}=\frac{6}{7}\).

Now out of these \(\frac{6}{7}\) cases the probability of Mike winning is \(\frac{1}{4}\) and the probability of Rob winning is \(\frac{1}{3}\). So \(P=\frac{6}{7}(\frac{1}{4}+\frac{1}{3})=\frac{1}{2}\).

Or consider the following:

Take 84 championships/cases (I chose 84 as it's a LCM of 3, 4, and 7).

Now, out of these 84 cases Ben will lose in \(\frac{6}{7}*84=72\). Mike would be the winner in \(72*\frac{1}{4}=18\) (1/4 th of the cases when Ben loses) and Rob would be the winner in \(72*\frac{1}{3}=24\). Therefore \(P=\frac{18+24}{84}=\frac{1}{2}\).


Answer: C


Hi Bunnel

If 6/7 * 1/4 = Probability that Mike Wins, Ben Loses and Rob Loses then
6/7 * 3/4 = Probability that Mike loses, Ben Loses and Rob WINS

( Given that there can only be ONE Winner and NO Draw)

BUT the probability that Mikes loses, Ben Loses and Rob Wins = 6/7 * 1/3

:shock: :shock: :shock:

Where am I wrong?Probability is definitely not my forte :( :( :(

Please clarify

Thanks
_________________

Our greatest weakness lies in giving up. The most certain way to succeed is always to try just one more time.

I hated every minute of training, but I said, 'Don't quit. Suffer now and live the rest of your life as a champion.-Mohammad Ali

Kudos [?]: 233 [1], given: 403

Current Student
User avatar
Joined: 12 Aug 2015
Posts: 300

Kudos [?]: 585 [0], given: 1474

Concentration: General Management, Operations
GMAT 1: 640 Q40 V37
GMAT 2: 650 Q43 V36
GMAT 3: 600 Q47 V27
GPA: 3.3
WE: Management Consulting (Consulting)
M07-12 [#permalink]

Show Tags

New post 14 Dec 2015, 08:50
Mrtinhnv wrote:
Dear Bunuel,
Here is my solution,
P(Mike win) = 6/7*1/4*2/3
P(Rob win) = 6/7*1/3*3/4
=> P(Mike win or Rob win) = 6/7*1/4*2/3 + 6/7*1/3*3/4 = 5/14
How is my solution wrong?
I don't understand why P=6/7(1/4+1/3), The question is either Mike or Rob will win
Please help me.


the stem says "If Ben were to lose the championship, Mike would be the winner with a probability of 1/4, and Rob - 1/3" - that is those probabilities of mike and rob are dependent on Ben losing and are not dependent on each other: whether mike loses then rob should win or vice versa. this is also what confused me.

so given that the stem gives us the OR probability of two events dependent on Ben only - we should add up 1/3 and 1/4. we cannot solve for scenarios when mike's win depends on the lose of rob because stem does not give this therefore 6/7*1/4*2/3 is not correct (we cannot make the assumption).

on the other hand if the stem asked to find the individual probability of winning of either mike or rob then the stem should ahve provided some more info on the dependency.
_________________

KUDO me plenty

Kudos [?]: 585 [0], given: 1474

1 KUDOS received
Intern
Intern
avatar
Joined: 22 Apr 2015
Posts: 12

Kudos [?]: 7 [1], given: 1

GMAT 1: 760 Q50 V44
Re: M07-12 [#permalink]

Show Tags

New post 17 Dec 2015, 09:18
1
This post received
KUDOS
samichange

You aren't told that Ben, Mike, and Rob are the ONLY participants. Basically the question could be restated as follows:

If Ben were to lose, Mike would win with probability 1/4, Rob - 1/3, and other - 5/12

Kudos [?]: 7 [1], given: 1

Intern
Intern
avatar
Joined: 27 Feb 2014
Posts: 2

Kudos [?]: [0], given: 2

Re: M07-12 [#permalink]

Show Tags

New post 18 Jul 2016, 19:47
Mrtinhnv wrote:
Dear Bunuel,
Here is my solution,
P(Mike win) = 6/7*1/4*2/3
P(Rob win) = 6/7*1/3*3/4
=> P(Mike win or Rob win) = 6/7*1/4*2/3 + 6/7*1/3*3/4 = 5/14
How is my solution wrong?
I don't understand why P=6/7(1/4+1/3), The question is either Mike or Rob will win
Please help me.



Hi, I had the same solution. I don't know why other's loss wasn't considered since the question stem says only one winner is possible.

Kudos [?]: [0], given: 2

Intern
Intern
avatar
Joined: 29 Jan 2013
Posts: 42

Kudos [?]: 5 [0], given: 2

Location: United States
Concentration: Operations, Leadership
Schools: Booth PT '20 (M)
GMAT 1: 650 Q50 V26
WE: Manufacturing and Production (Manufacturing)
Reviews Badge
Re M07-12 [#permalink]

Show Tags

New post 18 Aug 2016, 18:04
I think this is a high-quality question and I agree with explanation.

Kudos [?]: 5 [0], given: 2

Senior Manager
Senior Manager
User avatar
Joined: 31 Mar 2016
Posts: 406

Kudos [?]: 82 [0], given: 197

Location: India
Concentration: Operations, Finance
GMAT 1: 670 Q48 V34
GPA: 3.8
WE: Operations (Commercial Banking)
GMAT ToolKit User Premium Member
Re M07-12 [#permalink]

Show Tags

New post 23 Aug 2016, 06:57
I think this is a high-quality question and I agree with explanation.

Kudos [?]: 82 [0], given: 197

Senior Manager
Senior Manager
User avatar
Joined: 31 Mar 2016
Posts: 406

Kudos [?]: 82 [0], given: 197

Location: India
Concentration: Operations, Finance
GMAT 1: 670 Q48 V34
GPA: 3.8
WE: Operations (Commercial Banking)
GMAT ToolKit User Premium Member
Re M07-12 [#permalink]

Show Tags

New post 23 Aug 2016, 07:02
Can you please explain in a logical way the final step you have explained:
P=6/7(1/4+1/3)

Kudos [?]: 82 [0], given: 197

Intern
Intern
avatar
Joined: 27 Mar 2014
Posts: 9

Kudos [?]: 1 [0], given: 164

Re: M07-12 [#permalink]

Show Tags

New post 01 Sep 2016, 18:39
Hi, I'll take a stab at helping.

As mentioned above, the probability that Ben wins the championship is 1/7. Therefore, the probability that Ben loses the championship is 6/7 (in other words, 1- 1/7 = 6/7).

Mike has a 1/4 chance of winning. This is conditional upon Ben losing (because Ben and Mike can't both win). To calculate Mike's chances of winning, you multiply the probability that Mike wins (1/4) * the probability that Ben loses (6/7).

1/4 * 6/7 = 3/14

Repeat the same process for Rob. Multiply the probability of Ben losing times the probability of Rob winning

1/3 * 6/7 = 2/7

Simply add the two probabilities together. You add the probabilities together because the question asks what the probability that Mike OR Rob win.

The result is 3/14 + 2/7 = 7/14 = 1/2.

As Bunuel would say, Hope this helps.


Bunuel wrote:
If Ben were to lose the championship, Mike would be the winner with a probability of \(\frac{1}{4}\), and Rob - \(\frac{1}{3}\) . If the probability of Ben being the winner is \(\frac{1}{7}\), what is the probability that either Mike or Rob will win the championship? Assume that there can be only one winner.

A. \(\frac{1}{12}\)
B. \(\frac{1}{7}\)
C. \(\frac{1}{2}\)
D. \(\frac{7}{12}\)
E. \(\frac{6}{7}\)

Kudos [?]: 1 [0], given: 164

Intern
Intern
User avatar
B
Joined: 18 Jun 2015
Posts: 41

Kudos [?]: 10 [0], given: 7

Reviews Badge
Re: M07-12 [#permalink]

Show Tags

New post 12 Sep 2016, 14:28
Ivan90 wrote:
I think this question is good and helpful.
Please edit the question prompt. It looks like Rob's probability of winning is -(1/3)

It's simply a dash and not the negative sign.
Probability of an occurrence can't be negative. If the probability of something occurring is 0, then it is impossible for it to occur. Probability cannot be any lower than impossible.

Kudos [?]: 10 [0], given: 7

Intern
Intern
User avatar
B
Joined: 06 Feb 2016
Posts: 48

Kudos [?]: 9 [0], given: 26

Location: Poland
Concentration: Finance, Accounting
GMAT 1: 730 Q49 V41
GPA: 3.5
Re: M07-12 [#permalink]

Show Tags

New post 16 Sep 2016, 06:40
The tricky part is whether two have scenarios with three people or not. I first did it with a scenario LWL+LLW and got an answer which was not in the list. Then I understood my mistake which is making my own assumption :evil:

Kudos [?]: 9 [0], given: 26

Intern
Intern
User avatar
B
Joined: 21 Dec 2014
Posts: 31

Kudos [?]: 1 [0], given: 34

GMAT ToolKit User Reviews Badge
Re M07-12 [#permalink]

Show Tags

New post 31 Oct 2016, 03:58
I think this is a high-quality question and I agree with explanation. one thing is that -1\3 looks like negative. it makes me confuse.

Kudos [?]: 1 [0], given: 34

Intern
Intern
avatar
Joined: 19 Apr 2014
Posts: 2

Kudos [?]: [0], given: 14

GMAT ToolKit User
Re: M07-12 [#permalink]

Show Tags

New post 25 Nov 2016, 13:53
The probability of an event is always between 0 and 1, inclusive. So the question of some probability in the question given as -1/3 doesn't arise.

Secondly, probability of an event given that another event has occurred is P(A/B) = P(A)*P(B)

Here, P(A/B) is chances of other guys winning given that Ben has lost
P(A) = Ben has lost ... which has been derived as 1 - P(A') = 1 - 1/7 where P(A') = probability that Ben wins.
P(B) = Other 2 guys winning = 1/4+ 1/3 = 7/12

Therefore, P(A/B) = 6/7 * 7/12 = 6/12 = 1/2.

Kudos [?]: [0], given: 14

Intern
Intern
avatar
B
Joined: 28 Apr 2016
Posts: 20

Kudos [?]: 1 [0], given: 2

Re: M07-12 [#permalink]

Show Tags

New post 06 Apr 2017, 10:03
Hello,

I think question should be edited bcs it seems like Rob's probability of winning is -1/3. Minus should be eliminated from the question.

Kudos [?]: 1 [0], given: 2

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42326

Kudos [?]: 133106 [0], given: 12411

Re: M07-12 [#permalink]

Show Tags

New post 07 Apr 2017, 00:34

Kudos [?]: 133106 [0], given: 12411

Intern
Intern
avatar
B
Joined: 09 Apr 2016
Posts: 3

Kudos [?]: [0], given: 10

CAT Tests
Re: M07-12 [#permalink]

Show Tags

New post 03 Aug 2017, 10:03
1
This post was
BOOKMARKED
Hi Bunuel,

Whether this can be a way of answering this question.

Probability(Mike or Rob will win)=Probability of Mike winning+Probability of Rob winning-(Probability of Mike and Rob both winning)
=1/4 +1/3 -1/4*1/3(Since its already mentioned ,these are the probabilities subject to Ben losing so Ben's winning is anyways not required)
=1/2(Answer)

Kudos [?]: [0], given: 10

Manager
Manager
User avatar
G
Joined: 01 Sep 2016
Posts: 208

Kudos [?]: 185 [0], given: 33

GMAT 1: 690 Q49 V35
GMAT ToolKit User Reviews Badge CAT Tests
Re: M07-12 [#permalink]

Show Tags

New post 17 Sep 2017, 07:34
This is a really nice question. Thanks to the GMAT Club team for providing such questions in Club Tests. Cleared my concepts. Thanks
_________________

we shall fight on the beaches,
we shall fight on the landing grounds,
we shall fight in the fields and in the streets,
we shall fight in the hills;
we shall never surrender!

Kudos [?]: 185 [0], given: 33

Re: M07-12   [#permalink] 17 Sep 2017, 07:34

Go to page    1   2    Next  [ 21 posts ] 

Display posts from previous: Sort by

M07-12

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: chetan2u, Bunuel



GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.