GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 19 Oct 2019, 20:18

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

M31-23

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58445
M31-23  [#permalink]

Show Tags

New post 14 Jun 2015, 13:20
00:00
A
B
C
D
E

Difficulty:

  85% (hard)

Question Stats:

39% (02:11) correct 61% (02:23) wrong based on 38 sessions

HideShow timer Statistics

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58445
Re M31-23  [#permalink]

Show Tags

New post 14 Jun 2015, 13:20
Official Solution:

How many positive integers less than 10,000 are such that the product of their digits is 30?

A. 12
B. 24
C. 36
D. 38
E. 50


\(30 = 2*3*5 = 6*5\) (only \(2*3\) gives single digit number 6).

So, we should count the number of positive integers less than 10,000 with the digits {2, 3, 5} and {5, 6} and any number of 1's with each set.

2-digit numbers:

{5, 6} - the number of combinations = 2: 56 or 65.

3-digit numbers:

{1, 5, 6} - the number of combinations = 3! = 6: 156, 165, 516, 561, 615, or 651.

{2, 3, 5} - the number of combinations = 3! = 6.

4-digit numbers:

{1, 1, 5, 6} - the number of combinations = 4!/2! = 12.

{1, 2, 3, 5} - the number of combinations = 4! = 24.

Total = 2 + 6 + 6 + 12 + 24 = 50.


Answer: E
_________________
Senior Manager
Senior Manager
User avatar
Joined: 31 Mar 2016
Posts: 375
Location: India
Concentration: Operations, Finance
GMAT 1: 670 Q48 V34
GPA: 3.8
WE: Operations (Commercial Banking)
GMAT ToolKit User
Re M31-23  [#permalink]

Show Tags

New post 29 Jul 2016, 11:47
I think this is a high-quality question and I agree with explanation.
Current Student
User avatar
Joined: 10 Jan 2016
Posts: 17
Location: United States (WV)
Concentration: Social Entrepreneurship, Sustainability
GMAT 1: 690 Q47 V38
GPA: 3.72
WE: Project Management (Non-Profit and Government)
Re: M31-23  [#permalink]

Show Tags

New post 03 Aug 2016, 14:27
Bunuel wrote:
Official Solution:

How many positive integers less than 10,000 are such that the product of their digits is 30?

A. 12
B. 24
C. 36
D. 38
E. 50


\(30 = 2*3*5 = 6*5\) (only \(2*3\) gives single digit number 6).

So, we should count the number of positive integers less than 10,000 with the digits {2, 3, 5} and {5, 6} and any number of 1's with each set.

2-digit numbers:

{5, 6} - the number of combinations = 2: 56 or 65.

3-digit numbers:

{1, 5, 6} - the number of combinations = 3! = 6: 156, 165, 516, 561, 615, or 651.

{2, 3, 5} - the number of combinations = 3! = 6.

4-digit numbers:

{1, 1, 5, 6} - the number of combinations = 4!/2! = 12.

{1, 2, 3, 5} - the number of combinations = 4! = 24.

Total = 2 + 6 + 6 + 12 + 24 = 50.


Answer: E


Just to clarify:


For {1, 1, 5, 6} - the number of combinations = 4!/2! = 12. you choose 2! because two of the four places would produce the same number?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58445
Re: M31-23  [#permalink]

Show Tags

New post 03 Aug 2016, 22:23
SemperLiberi wrote:
Bunuel wrote:
Official Solution:

How many positive integers less than 10,000 are such that the product of their digits is 30?

A. 12
B. 24
C. 36
D. 38
E. 50


\(30 = 2*3*5 = 6*5\) (only \(2*3\) gives single digit number 6).

So, we should count the number of positive integers less than 10,000 with the digits {2, 3, 5} and {5, 6} and any number of 1's with each set.

2-digit numbers:

{5, 6} - the number of combinations = 2: 56 or 65.

3-digit numbers:

{1, 5, 6} - the number of combinations = 3! = 6: 156, 165, 516, 561, 615, or 651.

{2, 3, 5} - the number of combinations = 3! = 6.

4-digit numbers:

{1, 1, 5, 6} - the number of combinations = 4!/2! = 12.

{1, 2, 3, 5} - the number of combinations = 4! = 24.

Total = 2 + 6 + 6 + 12 + 24 = 50.


Answer: E


Just to clarify:


For {1, 1, 5, 6} - the number of combinations = 4!/2! = 12. you choose 2! because two of the four places would produce the same number?


Yes.

THEORY:

Permutations of \(n\) things of which \(P_1\) are alike of one kind, \(P_2\) are alike of second kind, \(P_3\) are alike of third kind ... \(P_r\) are alike of \(r_{th}\) kind such that: \(P_1+P_2+P_3+..+P_r=n\) is:

\(\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}\).

For example number of permutation of the letters of the word "gmatclub" is 8! as there are 8 DISTINCT letters in this word.

Number of permutation of the letters of the word "google" is \(\frac{6!}{2!2!}\), as there are 6 letters out of which "g" and "o" are represented twice.

Number of permutation of 9 balls out of which 4 are red, 3 green and 2 blue, would be \(\frac{9!}{4!3!2!}\).
_________________
Intern
Intern
avatar
B
Joined: 28 Mar 2017
Posts: 4
Re M31-23  [#permalink]

Show Tags

New post 27 Feb 2018, 10:15
I think this is a high-quality question and I agree with explanation. This is a very tricky question and a true rep of GMAT type Qs. Thanks, Bunuel.
Intern
Intern
avatar
Joined: 07 Nov 2017
Posts: 2
Re: M31-23  [#permalink]

Show Tags

New post 27 Aug 2018, 12:02
in (1, 1 , 5, 6) why it is a permutation while the order does not matter ???
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58445
Re: M31-23  [#permalink]

Show Tags

New post 28 Aug 2018, 05:19
saranasser wrote:
in (1, 1 , 5, 6) why it is a permutation while the order does not matter ???


We are interested in numbers less than 10,000 such that the product of their digits is 30.

One combination which gives the product of 30 is (1, 1 , 5, 6). But with this combination gives different numbers, isn't it? 1156 is different from 6511 and each of them has the product of their digits equal to 30. Thus we need all numbers which we can get from each group.

Hope it helps.
_________________
GMAT Club Bot
Re: M31-23   [#permalink] 28 Aug 2018, 05:19
Display posts from previous: Sort by

M31-23

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: chetan2u, Bunuel






Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne