Last visit was: 20 Nov 2025, 02:52 It is currently 20 Nov 2025, 02:52
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 846
Own Kudos:
5,145
 [2]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 846
Kudos: 5,145
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,453
 [1]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,453
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
rrsnathan
Joined: 30 May 2013
Last visit: 04 Aug 2014
Posts: 121
Own Kudos:
Given Kudos: 72
Location: India
Concentration: Entrepreneurship, General Management
GPA: 3.82
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
Kudos
Add Kudos
Bookmarks
Bookmark this Post
rrsnathan
hi,

i have a doubt in the example

Q.: |x^2-4| = 1. What is x?
Solution: There are 2 conditions:

a) (x^2-4)\geq0

how the range for this example is (X^2-4)>=0 and not (x^2-4)>0?


regards,
RRSNATHAN

You can ignore "=0" part. (x^2 - 4) cannot be 0 since its mod is 1. So you can certainly write the range as (x^2 - 4) > 0. In the overall scheme, it doesn't change anything. People usually write the ranges are ">=0" and "<0" to cover everything. Here "=0" is not needed.
avatar
honey86
Joined: 14 Jul 2013
Last visit: 01 May 2016
Posts: 19
Own Kudos:
Given Kudos: 39
Posts: 19
Kudos: 28
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I have a doubt.

In this problem
Problem: 1<x<9. What inequality represents this condition?
A. |x|<3
B. |x+5|<4
C. |x-1|<9
D. |-5+x|<4
E. |3+x|<5

can anyone please explain how can I determine in 10-20 sec that B and D are contenders among the options.
please put some light on this - D had left site 0 at x=5.

Thanks
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,002
 [2]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
honey86
I have a doubt.

In this problem
Problem: 1<x<9. What inequality represents this condition?
A. |x|<3
B. |x+5|<4
C. |x-1|<9
D. |-5+x|<4
E. |3+x|<5

can anyone please explain how can I determine in 10-20 sec that B and D are contenders among the options.
please put some light on this - D had left site 0 at x=5.

Thanks

|x - a| = b
implies that x is at a distance b from a.

|x - a| < b
implies x is at a distance less than b from a.

|x - 5| < 4
implies x is at a distance less than 4 from 5. A distance of 4 from 5 gives two points: 1 and 9. Since we need 1 < x < 9, this is the answer.

|x + 5| < 4
implies x is at a distance less than 4 from -5. A distance of 4 from -5 gives points -9 and -1.

Check this video: https://youtu.be/oqVfKQBcnrs
avatar
honey86
Joined: 14 Jul 2013
Last visit: 01 May 2016
Posts: 19
Own Kudos:
Given Kudos: 39
Posts: 19
Kudos: 28
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thank you Karishma. That was helpful
User avatar
JapinderKaur
Joined: 19 May 2014
Last visit: 11 Aug 2023
Posts: 23
Own Kudos:
72
 [1]
Given Kudos: 9
Posts: 23
Kudos: 72
 [1]
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Dear Honey

Here's a quick shortcut to solving this problem:

You know that 1<x<9. So, pick x=6 and substitute in each of the options. Only options C and D remain.

But, if you analyze option C, you'll find that it'll also hold true for x=0 or x=-1, which are outside the given domain of x. So, the given domain cannot be for option C.

So, the solution must be the only option remaining- D. :-D
avatar
madn800
Joined: 07 May 2013
Last visit: 11 Aug 2014
Posts: 67
Own Kudos:
Given Kudos: 1
Posts: 67
Kudos: 66
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Can somebody help me solve the inequality:|x+5| > 3|x - 5|

This is what I did.....
\(\frac{|x+5|}{|x - 5|}>3\)

==>\(\frac{x+5}{x - 5}>3\) & \(\frac{x+5}{x - 5}<-3\)
==>\(x+5>3x-15\) & \(x+5<-3x+15\)
==>-2x>-20 & 4x<10
==>x<10 & x<5/2
BUT answer is 5/2<x<10.
What am I doing wrong??
In the red highlighted portion I changed the inequality sign because I multiplied the equation with minus. Is it correct??
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,002
 [2]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
madn800
Can somebody help me solve the inequality:|x+5| > 3|x - 5|

This is what I did.....
\(\frac{|x+5|}{|x - 5|}>3\)

==>\(\frac{x+5}{x - 5}>3\) & \(\frac{x+5}{x - 5}<-3\)
==>\(x+5>3x-15\) & \(x+5<-3x+15\)
==>-2x>-20 & 4x<10
==>x<10 & x<5/2
BUT answer is 5/2<x<10.
What am I doing wrong??
In the red highlighted portion I changed the inequality sign because I multiplied the equation with minus. Is it correct??

In an inequality, you cannot multiply/divide by a variable until and unless you know the sign of the variable.
Also, you cannot divide by |x - 5| since x could be 5. Even if we assume that x is not 5, still you cannot multiply the inequality by (x - 5) as you have done here: ==>\(x+5>3x-15\) & \(x+5<-3x+15\)

If x < 5 i.e. x - 5 is negative, when you multiply the inequality by x - 5, the sign of the inequality with flip.

If you would want to use algebra, you need to check in the regions between the transition points:

Case 1: x < -5
In this case x+5 is negative and x-5 is negative, so
-(x+5) > -3(x - 5)
2x > 20
x > 10
Since x should be less than -5, x > 10 doesn't give us any value for x

Case 2: -5 <= x < 5
In this case x+5 is positive (or 0) and x-5 is negative, so
(x+5) > -3(x - 5)
4x > 10
x > 2.5
Since x should be less than 5, the range we get is 2.5 < x< 5


Case 3: x >= 5
In this case x+5 is positive and x-5 is positive, so
(x+5) > 3(x - 5)
2x < 20
x < 10
Since x should be greater than or equal to 5, the range we get is 5 <= x < 10

Combining case 2 and case 3, we get 2.5 < x < 10
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,002
 [2]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
madn800
Can somebody help me solve the inequality:|x+5| > 3|x - 5|

This is what I did.....
\(\frac{|x+5|}{|x - 5|}>3\)

==>\(\frac{x+5}{x - 5}>3\) & \(\frac{x+5}{x - 5}<-3\)
==>\(x+5>3x-15\) & \(x+5<-3x+15\)
==>-2x>-20 & 4x<10
==>x<10 & x<5/2
BUT answer is 5/2<x<10.
What am I doing wrong??
In the red highlighted portion I changed the inequality sign because I multiplied the equation with minus. Is it correct??

You can use the number line approach too.

|x+5| > 3|x - 5|
The distance of x from -5 is greater than 3 times the distance of x from 5.

Draw the number line:


___________________-5______________0______________5______________

At 0, the distance of x from -5 is same as distance of x from 5. So you must move to the right to make distance from -5 greater. As you keep moving to the right, distance of x from -5 will keep increasing but distance from 5 will keep decreasing. Mid way between 0 and 5, distance of x from -5 is 7.5 and distance of x from 5 is 2.5. So x = 2.5 is a point where distance of x from -5 is 3 times distance of x from 5.

As you keep moving further to the right and reach x = 5, distance from -5 will be 10. Moving further to the right 5 steps will give you a distance of 15 from -5 and 5 from 5. So x = 10 is a point where distance of x from -5 is 3 times distance of x from 5.

In between these two points, distance of x from -5 is more than 3 times distance of x from 5.

Answer: -2.5 < x < 10
User avatar
sagnik242
Joined: 28 Dec 2013
Last visit: 04 Oct 2016
Posts: 47
Own Kudos:
Given Kudos: 3
Posts: 47
Kudos: 14
Kudos
Add Kudos
Bookmarks
Bookmark this Post
In the absolute value question, I don't get why the distance between A and X is not explained. There's discussion about Y and A, Y and B, X between A and Y, distance between X and B and Y and B but not A and X , I need a reexplanation, maybe with numbers
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sagnik242
My questions: if we have 3 points why do we have 4 conditions? Next, for each of the letters (a,b,c,d) how do we know which equation to use and why is the inequality used? For example, for a) we do x = -8, but then how to we know the equation to use is -(x+3) - (4-x) = -(8+x), and how did the negative sign come in front of the -x+3 and why? I have the same type of questions for b,c,d so maybe an answer to a will help

Plot the 3 points: -8, -3 and 4 on the number line. Now there are 4 distinct regions on the number line:
The part that lies to the left of -8,
the part that lies between -8 and -3,
the part that lies between -3 and 4 and
the part that lies to the right of 4.

In each of these regions, each of the absolute value expressions will behave differently.

You should know the definition of absolute value:

|x| = x if x >= 0
|x| = -x if x < 0

Consider the equation:
|x+3| - |4-x| = |8+x|

What happens in the region which is at the left of -8 say x = -10
x+3 = -10+3 = -7
Since x+3 is negative, |x+3| = -(x + 3)

4-x = 4 - (-10) = 14
Since 4-x is positive, |4 - x| = 4 - x

8 + x = 8 - 10 = -2
Since x+8 is negative, |8+x| = -(8+x)

This is the logic used. Now repeat it for each region.
avatar
mina89
Joined: 22 Aug 2014
Last visit: 13 Apr 2015
Posts: 1
Given Kudos: 19
Schools: Booth PT '18
Schools: Booth PT '18
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I dont seem to understand that in the last option (d), why the sign of (4-x) is reversed to positive?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,453
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mina89
I dont seem to understand that in the last option (d), why the sign of (4-x) is reversed to positive?

When \(x \geq 4\), |4 - x|=-(4 - x), hence -|4 - x| = -(-(4 - x)) = (4 - x)
avatar
appleid
Joined: 22 Oct 2014
Last visit: 28 Jan 2022
Posts: 22
Own Kudos:
Given Kudos: 103
Posts: 22
Kudos: 18
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma


If |x- 5| < 4, now we are looking for points at a distance less than 4 away from 5.
Attachment:
Ques2.jpg

VeritasPrepKarishma

OR consider that lx+3l>3 means distance of x from -3 is more than 3.
If you go to 3 steps to right from -3, you reach 0. Anything after than is ok.
If you go 3 steps to left from -3, you reach -6. Anything to its left is ok.
Attachment:
Ques2.jpg

I didn't understand the highlighted portion, Could you please explain:
1. How we are getting to positive 5 from -5 inside of the absolute value; then similarly negative 3 from +3 inside of the absolute value?
2. I can work with the more than or less than from the greater or less than sign but how can I get the value next to "from" , inside of the absolute value, to make a number line?

TIA!
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
Kudos
Add Kudos
Bookmarks
Bookmark this Post
appleid
VeritasPrepKarishma


If |x- 5| < 4, now we are looking for points at a distance less than 4 away from 5.
Attachment:
Ques2.jpg

VeritasPrepKarishma

OR consider that lx+3l>3 means distance of x from -3 is more than 3.
If you go to 3 steps to right from -3, you reach 0. Anything after than is ok.
If you go 3 steps to left from -3, you reach -6. Anything to its left is ok.
Attachment:
Ques2.jpg

I didn't understand the highlighted portion, Could you please explain:
1. How we are getting to positive 5 from -5 inside of the absolute value; then similarly negative 3 from +3 inside of the absolute value?
2. I can work with the more than or less than from the greater or less than sign but how can I get the value next to "from" , inside of the absolute value, to make a number line?

TIA!

Here is a video that explains this logic: https://youtu.be/oqVfKQBcnrs
User avatar
pacifist85
Joined: 07 Apr 2014
Last visit: 20 Sep 2015
Posts: 324
Own Kudos:
Given Kudos: 169
Status:Math is psycho-logical
Location: Netherlands
GMAT Date: 02-11-2015
WE:Psychology and Counseling (Other)
Posts: 324
Kudos: 449
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello,

There are a few things I don't find clear in the theory about absolute value, and particularly the 3 step method.

1) How do we decide which are the points we are interested in?
In this case for example, |x+3| - |4-x|=|8+x|, why are we interested in -8, -3, 4 and not -4? Is it because if we replace -x with 4 the expression becomes zero? So, in this case we are not saying that we need -4, becuase the minus sign is already there in -x?
2) Why are these values ordered like -8, -3, 4? Are they going from the least to the highest?
3) How are we choosing our conditions? So, why are the conditions these: x<-8, -8<x<=-3, -3<=x<=4 and x>=4? Does this have to do with the order of the values, as mentioned in 3 above? Does a negative sign go with a x< and a positive with a x>=?
4) How do we decide how to change the sign while we compute the inequality? E.g, when x<-8, why is it -(x+3) - (4-x) = - (8+x) or when -8<x<=-3 it is -(x+3) - (4-x) = (8+x)?

Thank you.
User avatar
walker
Joined: 17 Nov 2007
Last visit: 25 May 2025
Posts: 2,398
Own Kudos:
Given Kudos: 362
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Expert
Expert reply
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Posts: 2,398
Kudos: 10,717
Kudos
Add Kudos
Bookmarks
Bookmark this Post
pacifist85

1) How do we decide which are the points we are interested in?
In this case for example, |x+3| - |4-x|=|8+x|, why are we interested in -8, -3, 4 and not -4? Is it because if we replace -x with 4 the expression becomes zero? So, in this case we are not saying that we need -4, becuase the minus sign is already there in -x?
2) Why are these values ordered like -8, -3, 4? Are they going from the least to the highest?
3) How are we choosing our conditions? So, why are the conditions these: x<-8, -8<x<=-3, -3<=x<=4 and x>=4? Does this have to do with the order of the values, as mentioned in 3 above? Does a negative sign go with a x< and a positive with a x>=?
4) How do we decide how to change the sign while we compute the inequality? E.g, when x<-8, why is it -(x+3) - (4-x) = - (8+x) or when -8<x<=-3 it is -(x+3) - (4-x) = (8+x)?

1) When the expression under modulus equals 0. The expression may or may not change its sign in those special points.
2) Yes, because the number line goes from -infinity all the way to +infinity. -4 is not a special point (see #1; 4 - (-4) = 8 ≠ 0)
3) All conditions cover the number line and break at the special points.
4) Using the definition of modulus: for y = |x|, y = x if x >=0 and y = -x if x < 0.
User avatar
pacifist85
Joined: 07 Apr 2014
Last visit: 20 Sep 2015
Posts: 324
Own Kudos:
Given Kudos: 169
Status:Math is psycho-logical
Location: Netherlands
GMAT Date: 02-11-2015
WE:Psychology and Counseling (Other)
Posts: 324
Kudos: 449
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I am not sure I undertand this completely. I have a problem with the signs we use depending on the conditions:

Example #1
Q.: |x+3|−|4−x|=|8+x|. How many solutions does the equation have?
Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x<−8. −(x+3)−(4−x)=−(8+x) --> x=−1. We reject the solution because our condition is not satisfied (-1 is not less than -8)
Why are the all the signs here negative?
b) −8≤x<−3. −(x+3)−(4−x)=(8+x) --> x=−15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)
Why are the signs in the first part here negative and not the second?
c) −3≤x<4. (x+3)−(4−x)=(8+x) --> x=9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)
Why is this similar to the original equation?
d) x≥4. (x+3)+(4−x)=(8+x) --> x=−1. We reject the solution because our condition is not satisfied (-1 is not more than 4)
This makes more sense as x will be positive. But is this why all the signs outside the brackets are positive?

Thank you!
   1   2   3   4   5   6   
Moderator:
Math Expert
105408 posts