Aug 19 08:00 AM PDT  09:00 AM PDT Join a 4day FREE online boot camp to kick off your GMAT preparation and get you into your dream bschool in R1.**Limited for the first 99 registrants. Register today! Aug 20 08:00 PM PDT  09:00 PM PDT EMPOWERgmat is giving away the complete Official GMAT Exam Pack collection worth $100 with the 3 Month Pack ($299) Aug 20 09:00 PM PDT  10:00 PM PDT Take 20% off the plan of your choice, now through midnight on Tuesday, 8/20 Aug 22 09:00 PM PDT  10:00 PM PDT What you'll gain: Strategies and techniques for approaching featured GMAT topics, and much more. Thursday, August 22nd at 9 PM EDT Aug 24 07:00 AM PDT  09:00 AM PDT Learn reading strategies that can help even nonvoracious reader to master GMAT RC
Author 
Message 
TAGS:

Hide Tags

CEO
Joined: 17 Nov 2007
Posts: 3315
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth)  Class of 2011

Re: Math: Combinatorics
[#permalink]
Show Tags
04 Dec 2011, 07:17
.. .k objects taken from a set of n distinct objects.... so k is always less or equal N by definition.
_________________
HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android)  The OFFICIAL GMAT CLUB PREP APP, a musthave app especially if you aim at 700+  Limited GMAT/GRE Math tutoring in Chicago



Current Student
Joined: 02 Feb 2012
Posts: 178
Location: United States
GPA: 3.08

Re: Math: Combinatorics
[#permalink]
Show Tags
14 Mar 2012, 16:34
Thank you for this post! Very helpful!



Manager
Joined: 30 May 2008
Posts: 51

Re: Math: Combinatorics
[#permalink]
Show Tags
11 Apr 2012, 23:29
walker wrote: The topic is not finished.COMBINATORICScreated by: walkeredited by: bb, Bunuel This post is a part of [ GMAT MATH BOOK]  Circular arrangementsLet's say we have 6 distinct objects, how many relatively different arrangements do we have if those objects should be placed in a circle. The difference between placement in a row and that in a circle is following: if we shift all object by one position, we will get different arrangement in a row but the same relative arrangement in a circle. So, for the number of circular arrangements of n objects we have: \(R = \frac{n!}{n} = (n1)!\)Tips and TricksAny problem in Combinatorics is a counting problem. Therefore, a key to solution is a way how to count the number of arrangements. It sounds obvious but a lot of people begin approaching to a problem with thoughts like "Should I apply C or P formula here?". Don't fall in this trap: define how you are going to count arrangements first, realize that your way is right and you don't miss something important, and only then use C or P formula if you need them. ResourcesWalker's post with Combinatorics/probability problems: [ Combinatorics/probability Problems] 
Attachment: Math_Combinatorics_6balls.png  Attachment: Math_Combinatorics_6balls_b.png  Attachment: Math_Combinatorics_6balls_l.png     Attachment: Math_Comb_Round_t.png 
having a hard time understand the formula under circular arrangement



Intern
Joined: 25 Jun 2012
Posts: 30

Re: Math: Combinatorics
[#permalink]
Show Tags
04 Dec 2012, 20:26
just wanted to throw these videos from khan academy out there, super helpful in dumbing down the concepts and holding your hand through it combinations: http://www.khanacademy.org/math/probabi ... inations_1permutations: http://www.khanacademy.org/math/probabi ... utations_1These should be required watching, MGMAT does a thorough job of confusing my ass in this area.



Intern
Joined: 01 Sep 2012
Posts: 8
Location: United States

Re: Math: Combinatorics
[#permalink]
Show Tags
17 Mar 2013, 00:07
Great post., Many thanks!!



Math Expert
Joined: 02 Sep 2009
Posts: 57026

Re: Math: Combinatorics
[#permalink]
Show Tags
11 Jul 2013, 00:07
Bumping for review*. *New project from GMAT Club!!! Check HERE
_________________



Manager
Joined: 15 Aug 2013
Posts: 234

Re: Math: Combinatorics
[#permalink]
Show Tags
07 Sep 2013, 20:03
Hi  I'm a little confused by the last part of the explanation above:
"here is a basket with 4 blue balls, 3 red balls and 2 yellow balls. The balls of the same color are identical. How many ways can a child pick balls out of this basket ?
Solution We combine techniques from the 2 cases above. Consider the blue balls as one entity and instead of asking the yes/no question, ask the question how many ways to choose the balls ? This is answered using the second case, and the answer is (4+1). Combining this with the ways to choose red and yellow balls, the overall ways to choose balls would be (4+1)*(3+1)*(2+1)."
What is the + 1 for and how can we just multiply the 3 sets  4*3*2? Can't the child pick all 4 blue and no red etc?



MBA Section Director
Affiliations: GMAT Club
Joined: 22 Feb 2012
Posts: 6656
City: Pune

Re: Math: Combinatorics
[#permalink]
Show Tags
08 Sep 2013, 19:39
russ9 wrote: What is the + 1 for and how can we just multiply the 3 sets  4*3*2? Can't the child pick all 4 blue and no red etc? +1 is for NOT choosing any of the n identical balls. Hope that helps
Attachments
Untitled123.png [ 10.2 KiB  Viewed 7007 times ]
_________________
2020 MBA Applicants: Introduce Yourself Here!
MBA Video Series  Video answers to specific components and questions about MBA applications.
2020 MBA Deadlines, Essay Questions and Analysis of all top MBA programs



Manager
Joined: 15 Aug 2013
Posts: 234

Re: Math: Combinatorics
[#permalink]
Show Tags
06 Apr 2014, 13:42
walker wrote: Combination
A combination is an unordered collection of k objects taken from a set of n distinct objects. The number of ways how we can choose k objects out of n distinct objects is denoted as:
\(C^n_k\)
knowing how to find the number of arrangements of n distinct objects we can easily find formula for combination:
1. The total number of arrangements of n distinct objects is n! 2. Now we have to exclude all arrangements of k objects (k!) and remaining (nk) objects ((nk)!) as the order of chosen k objects and remained (nk) objects doesn't matter.
\(C^n_k = \frac{n!}{k!(nk)!}\)
Permutation
A permutation is an ordered collection of k objects taken from a set of n distinct objects. The number of ways how we can choose k objects out of n distinct objects is denoted as:
\(P^n_k\)
knowing how to find the number of arrangements of n distinct objects we can easily find formula for combination:
1. The total number of arrangements of n distinct objects is n! 2. Now we have to exclude all arrangements of remaining (nk) objects ((nk)!) as the order of remained (nk) objects doesn't matter.
\(P^n_k = \frac{n!}{(nk)!}\)
If we exclude order of chosen objects from permutation formula, we will get combination formula:
\(\frac{P^n_k}{k!} = C^n_k\)
Hello friends  this page seems to be the best find yet. I've been using Manhattan gmat books and their content on Combinatorics and Probability is pretty lacking so please excuse my rudimentary questions. One topic that i'm having a very hard time grasping is the "ordered vs. unordered" set. Seems like Permutation is ordered and Combination is unordered. I have absolutely no clue what that means and more importantly, I can't connect the dots to figure out why it affects the equations the way it does? Any help would be appreciated.



Math Expert
Joined: 02 Sep 2009
Posts: 57026

Re: Math: Combinatorics
[#permalink]
Show Tags
06 Apr 2014, 13:56
russ9 wrote: walker wrote: Combination
A combination is an unordered collection of k objects taken from a set of n distinct objects. The number of ways how we can choose k objects out of n distinct objects is denoted as:
\(C^n_k\)
knowing how to find the number of arrangements of n distinct objects we can easily find formula for combination:
1. The total number of arrangements of n distinct objects is n! 2. Now we have to exclude all arrangements of k objects (k!) and remaining (nk) objects ((nk)!) as the order of chosen k objects and remained (nk) objects doesn't matter.
\(C^n_k = \frac{n!}{k!(nk)!}\)
Permutation
A permutation is an ordered collection of k objects taken from a set of n distinct objects. The number of ways how we can choose k objects out of n distinct objects is denoted as:
\(P^n_k\)
knowing how to find the number of arrangements of n distinct objects we can easily find formula for combination:
1. The total number of arrangements of n distinct objects is n! 2. Now we have to exclude all arrangements of remaining (nk) objects ((nk)!) as the order of remained (nk) objects doesn't matter.
\(P^n_k = \frac{n!}{(nk)!}\)
If we exclude order of chosen objects from permutation formula, we will get combination formula:
\(\frac{P^n_k}{k!} = C^n_k\)
Hello friends  this page seems to be the best find yet. I've been using Manhattan gmat books and their content on Combinatorics and Probability is pretty lacking so please excuse my rudimentary questions. One topic that i'm having a very hard time grasping is the "ordered vs. unordered" set. Seems like Permutation is ordered and Combination is unordered. I have absolutely no clue what that means and more importantly, I can't connect the dots to figure out why it affects the equations the way it does? Any help would be appreciated. In how many way we can choose two letters out of {a, b, c}, of the order of the letters does not matter?{a, b} {a, c} {b, c} So, in 3 ways: \(C^2_3=3\). In how many way we can choose two letters out of {a, b, c}, of the order of the letters matters?{a, b} {b, a} {a, c} {c, a} {b, c} {c, b} So, in 6 ways: \(P^2_3=6\). I'd advice to go through easier questions on the topic to understand better. Check here: dsquestiondirectorybytopicdifficulty128728.html and here: gmatpsquestiondirectorybytopicdifficulty127957.htmlHope it helps.
_________________



Manager
Joined: 15 Aug 2013
Posts: 234

Re: Math: Combinatorics
[#permalink]
Show Tags
06 Apr 2014, 14:08
Bunuel wrote: russ9 wrote: walker wrote: Combination
A combination is an unordered collection of k objects taken from a set of n distinct objects. The number of ways how we can choose k objects out of n distinct objects is denoted as:
\(C^n_k\)
knowing how to find the number of arrangements of n distinct objects we can easily find formula for combination:
1. The total number of arrangements of n distinct objects is n! 2. Now we have to exclude all arrangements of k objects (k!) and remaining (nk) objects ((nk)!) as the order of chosen k objects and remained (nk) objects doesn't matter.
\(C^n_k = \frac{n!}{k!(nk)!}\)
Permutation
A permutation is an ordered collection of k objects taken from a set of n distinct objects. The number of ways how we can choose k objects out of n distinct objects is denoted as:
\(P^n_k\)
knowing how to find the number of arrangements of n distinct objects we can easily find formula for combination:
1. The total number of arrangements of n distinct objects is n! 2. Now we have to exclude all arrangements of remaining (nk) objects ((nk)!) as the order of remained (nk) objects doesn't matter.
\(P^n_k = \frac{n!}{(nk)!}\)
If we exclude order of chosen objects from permutation formula, we will get combination formula:
\(\frac{P^n_k}{k!} = C^n_k\)
Hello friends  this page seems to be the best find yet. I've been using Manhattan gmat books and their content on Combinatorics and Probability is pretty lacking so please excuse my rudimentary questions. One topic that i'm having a very hard time grasping is the "ordered vs. unordered" set. Seems like Permutation is ordered and Combination is unordered. I have absolutely no clue what that means and more importantly, I can't connect the dots to figure out why it affects the equations the way it does? Any help would be appreciated. In how many way we can choose two letters out of {a, b, c}, of the order of the letters does not matter?{a, b} {a, c} {b, c} So, in 3 ways: \(C^2_3=3\). In how many way we can choose two letters out of {a, b, c}, of the order of the letters matters?{a, b} {b, a} {a, c} {c, a} {b, c} {c, b} So, in 6 ways: \(P^2_3=6\). I'd advice to go through easier questions on the topic to understand better. Check here: dsquestiondirectorybytopicdifficulty128728.html and here: gmatpsquestiondirectorybytopicdifficulty127957.htmlHope it helps. Thanks for the tips. I'll work on doing the easier questions. Cheers.



Current Student
Joined: 25 Nov 2014
Posts: 155
WE: Engineering (Manufacturing)

Re: Math: Combinatorics
[#permalink]
Show Tags
07 Aug 2015, 23:27
can u please share something like this on "Probability" as well?????



Math Expert
Joined: 02 Sep 2009
Posts: 57026

Re: Math: Combinatorics
[#permalink]
Show Tags
16 Aug 2015, 10:09
AA2014 wrote: can u please share something like this on "Probability" as well????? Check here: mathprobability87244.html
_________________



Intern
Joined: 05 Jan 2017
Posts: 22
Location: India

Re: Math: Combinatorics
[#permalink]
Show Tags
05 Jan 2017, 18:44
Circular arrangements having hard time understanding how did you arrive at the formula of dividing n! by n. Can someone please elaborate?
Thanks Kunal



Math Expert
Joined: 02 Sep 2009
Posts: 57026

Re: Math: Combinatorics
[#permalink]
Show Tags
06 Jan 2017, 02:40
kuvshah wrote: Circular arrangements having hard time understanding how did you arrive at the formula of dividing n! by n. Can someone please elaborate?
Thanks Kunal The number of arrangements of n distinct objects in a row is given by \(n!\). The number of arrangements of n distinct objects in a circle is given by \((n1)!\). The difference between placement in a row and that in a circle is following: if we shift all object by one position, we will get different arrangement in a row but the same relative arrangement in a circle. So, for the number of circular arrangements of n objects we have: \(\frac{n!}{n} = (n1)!\). Check other Arrangements in a Row and around a Table questions in our Special Questions Directory.
_________________



Intern
Joined: 05 Jan 2017
Posts: 22
Location: India

Re: Math: Combinatorics
[#permalink]
Show Tags
06 Jan 2017, 17:45
Thanks for the reply. I got it now. I understood this from a youtube videos  the link I cannot post it yet as I am new to this forum. Since we have n! ways to arrange distinct objects in circle and there are n repeats (if we shift all object by one position, we will get because the same relative arrangement in a circle), the equation is n!/(repeat i.e. n). So n!/n = (n1)!



Manager
Joined: 30 Sep 2017
Posts: 216
Concentration: Technology, Entrepreneurship
GPA: 3.8
WE: Engineering (Real Estate)

Re: Math: Combinatorics
[#permalink]
Show Tags
08 Aug 2019, 13:48
Thanks for the information....much appreciated!!
Posted from my mobile device




Re: Math: Combinatorics
[#permalink]
08 Aug 2019, 13:48



Go to page
Previous
1 2
[ 37 posts ]



