Sep 18 12:00 PM EDT  01:00 PM EDT Mindful MBA series Part 1, Fall 2019. Becoming a More Mindful GMAT Taker. Tuesday, September 18th at 12 PM ET Sep 17 07:00 AM PDT  08:00 AM PDT With Hee Jean Kim, GMAT Instructor at Math Revolution, learn how to solve data sufficiency questions using variable approach, and how & when to use it. Sep 19 12:00 PM PDT  10:00 PM PDT On Demand $79, For a score of 4951 (from current actual score of 40+) AllInOne Standard & 700+ Level Questions (150 questions) Sep 19 08:00 PM EDT  09:00 PM EDT Strategies and techniques for approaching featured GMAT topics. One hour of live, online instruction. Sep 19 10:00 PM PDT  11:00 PM PDT Join a FREE 1day Data Sufficiency & Critical Reasoning workshop and learn the best strategies to tackle the two trickiest question types in the GMAT! Sep 21 07:00 AM PDT  09:00 AM PDT Learn reading strategies that can help even nonvoracious reader to master GMAT RC Sep 21 08:00 PM PDT  09:00 PM PDT Exclusive offer! Get 400+ Practice Questions, 25 Video lessons and 6+ Webinars for FREE Sep 23 08:00 AM PDT  09:00 AM PDT Join a free 1hour webinar and learn how to create the ultimate study plan, and be accepted to the upcoming Round 2 deadlines. Save your spot today! Monday, September 23rd at 8 AM PST
Author 
Message 
TAGS:

Hide Tags

Intern
Joined: 21 Apr 2010
Posts: 3

The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
21 Apr 2010, 21:09
Question Stats:
59% (01:57) correct 41% (01:51) wrong based on 861 sessions
HideShow timer Statistics
The area bounded by the curves x + y = 1 and x  y = 1 is A. 3 B. 4 C. 2 D. 1 E. None
Official Answer and Stats are available only to registered users. Register/ Login.




Math Expert
Joined: 02 Sep 2009
Posts: 58037

Re: area bounded by the curves
[#permalink]
Show Tags
25 Feb 2012, 01:24
fortsill wrote: fivezero7 wrote: anni wrote: thank you for the reply, is it required to plot these lines and then calculate? can we get directly i mean is there any formula to solve this problem? thanks hi anni, there is no need to plot it, once you have mastered the art of visualization. the way i did it is as under. take x+y=1 it intersects the axes at (1,0) and (0,1) and makes a right angled triangle with the axes with each side (other than the hypotenuse) as 1 hence the area of this triangle is 0.5*1*1 = 0.5 sq. units. all other lines are symmetrical and form 3 more congruent triangles with the axes at different points. so the total area will be 0.5+0.5+0.5+0.5 = 2 sq units. hope i am clear Very clear, and amazed to see how much was packed under that question. But, am curious if there's any other way to solve the problem? The area bounded by the curves x + y = 1, x  y = 1 is A. 3 B. 4 C. 2 D. 1 E. None x+y=1 represents two lines: x+y=1 and x+y=1 > y=1x and y=1x. Find the x and y intercept of these lines to plot; xy=1 represents two lines: xy=1 and xy=1 > y=x1 and y=x+1. Find the x and y intercept of these lines to plot; Notice that these lines are mirror images of each other. Here is a square you get when you plot them: Attachment:
Area.gif [ 4.93 KiB  Viewed 45921 times ]
Notice that the diagonal of this square is equal to 2 (the difference between x intercepts). Area of a square is diagonal^2/2=2^2/2=2. Answer: C. Check similar questions to practice: m065absolutevalue108191.htmlgraphsmodulushelp86549.htmlm06q572817.htmlifequationenclosesacertainregion110053.htmlareaofregion126117.htmlHope it helps.
_________________




Intern
Joined: 08 Apr 2010
Posts: 27

Re: area bounded by the curves
[#permalink]
Show Tags
21 Apr 2010, 22:05
anni wrote: The area bounded by the curves \(x + y = 1,\) \(x  y = 1\) is
A.3 B.4 C.2 D.1 E. None
please, help how to solve ? hi, these equations represent four different equations x+y=1 x+y=1 xy=1 xy=1 once you plot these on the graph, you will easily find the area under these equations. just for the record, the answer shall be 2.
_________________




Intern
Joined: 21 Apr 2010
Posts: 3

Re: area bounded by the curves
[#permalink]
Show Tags
21 Apr 2010, 22:12
fivezero7 wrote: anni wrote: The area bounded by the curves \(x + y = 1,\) \(x  y = 1\) is
A.3 B.4 C.2 D.1 E. None
please, help how to solve ? hi, these equations represent four different equations x+y=1 x+y=1 xy=1 xy=1 once you plot these on the graph, you will easily find the area under these equations. just for the record, the answer shall be 2. thank you for the reply, is it required to plot these lines and then calculate? can we get directly i mean is there any formula to solve this problem? thanks



Intern
Joined: 08 Apr 2010
Posts: 27

Re: area bounded by the curves
[#permalink]
Show Tags
21 Apr 2010, 22:20
anni wrote: thank you for the reply, is it required to plot these lines and then calculate? can we get directly i mean is there any formula to solve this problem? thanks hi anni, there is no need to plot it, once you have mastered the art of visualization. the way i did it is as under. take x+y=1 it intersects the axes at (1,0) and (0,1) and makes a right angled triangle with the axes with each side (other than the hypotenuse) as 1 hence the area of this triangle is 0.5*1*1 = 0.5 sq. units. all other lines are symmetrical and form 3 more congruent triangles with the axes at different points. so the total area will be 0.5+0.5+0.5+0.5 = 2 sq units. hope i am clear
_________________



Intern
Joined: 24 Feb 2012
Posts: 29

Re: area bounded by the curves
[#permalink]
Show Tags
25 Feb 2012, 00:06
fivezero7 wrote: anni wrote: thank you for the reply, is it required to plot these lines and then calculate? can we get directly i mean is there any formula to solve this problem? thanks hi anni, there is no need to plot it, once you have mastered the art of visualization. the way i did it is as under. take x+y=1 it intersects the axes at (1,0) and (0,1) and makes a right angled triangle with the axes with each side (other than the hypotenuse) as 1 hence the area of this triangle is 0.5*1*1 = 0.5 sq. units. all other lines are symmetrical and form 3 more congruent triangles with the axes at different points. so the total area will be 0.5+0.5+0.5+0.5 = 2 sq units. hope i am clear Very clear, and amazed to see how much was packed under that question. But, am curious if there's any other way to solve the problem?



Intern
Joined: 12 Mar 2012
Posts: 9

Re: The area bounded by the curves x + y = 1, x  y = 1 is
[#permalink]
Show Tags
12 Apr 2012, 08:17
anni wrote: The area bounded by the curves x + y = 1, x  y = 1 is
A. 3 B. 4 C. 2 D. 1 E. None
please, help how to solve ? One more method: solve following equns: X+Y=1 Xy=1 Xy=1 X+y=1 Out put X= +_ 1 Y=+_1 Plot the values of X and Y on graph, you will see the square Now use pythagoras thm to find diagonal,which will be the side of that square. = Sqaure root 2 square it and ans will be 2



Manager
Joined: 27 Dec 2011
Posts: 53

Re: The area bounded by the curves x + y = 1, x  y = 1 is
[#permalink]
Show Tags
22 Sep 2012, 18:11
the question threw me away when it said "curves" and I started thinking about parabola, It should have said "lines" instead.
@Bunuel, Does gmat confuses us with this kind of language?
thanks!



Senior Manager
Joined: 13 Aug 2012
Posts: 405
Concentration: Marketing, Finance
GPA: 3.23

Re: The area bounded by the curves x + y = 1, x  y = 1 is
[#permalink]
Show Tags
05 Dec 2012, 21:27
(1) Derive all equations x + y = 1 eq1: x + y = 1 eq2: x + y = 1 x  y = 1 eq3: x  y = 1 eq4: y  x = 1 (2) Plot your graph using x=0 and y=0. eq1: 0,1 and 1,0 eq2: 0,1 and 1,0 eq3: 01 and 1,0 eq4: 0,1 and 1,0 (3) You will recognize a region that is a square with a diagonal of 2 (4) Calculate the area. diagonal = side * \(\sqrt{2}\) side = \(\frac{2}{\sqrt{2}}\) side = \(\sqrt{2}\) Area = \(side^2\) = \(\sqrt{2}^2\) = \(2\) For detailed solutions for other similar problems. http://burnoutorbreathe.blogspot.com/2012/12/absolutevaluessolvingforareaof.html
_________________
Impossible is nothing to God.



Math Expert
Joined: 02 Sep 2009
Posts: 58037

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
04 Jul 2013, 01:44
Bumping for review and further discussion*. Get a kudos point for an alternative solution! *New project from GMAT Club!!! Check HERE
_________________



Manager
Joined: 22 Feb 2009
Posts: 158

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
04 Aug 2014, 00:06
anni wrote: The area bounded by the curves x + y = 1 and x  y = 1 is
A. 3 B. 4 C. 2 D. 1 E. None The question seems confusing at first since it said the curves. But if you know how to deal with absolute values, you can come up with the solution pretty quickly. C
_________________
......................................................................... +1 Kudos please, if you like my post



Intern
Joined: 03 Jul 2015
Posts: 30

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
04 Sep 2015, 05:11
Bunuel wrote: Bumping for review and further discussion*. Get a kudos point for an alternative solution! *New project from GMAT Club!!! Check HEREwhy only (0,1) (1,0) should only pick? for x+y=1, if i chose (10,9) then it still become 1, can you please explain me what exactly the method of chosing number while finding area for this type of math



Senior Manager
Joined: 23 Sep 2015
Posts: 371
Location: France
GMAT 1: 690 Q47 V38 GMAT 2: 700 Q48 V38
WE: Real Estate (Mutual Funds and Brokerage)

The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
29 Dec 2015, 06:47
Hi Bunuel, just a question, I am getting confused with this. Can't we just find all the solutions for x and y by using just one equation? If we take the first equation: x + y = 1 and say that y = 0 then x = 1 or 1 and if x = 0 then y =1 and 1 Would that be incorrect? And if that's the case, what is the difference between this equation x + y = 1 and this one x+y=1 Thanks a lot
_________________



Board of Directors
Joined: 17 Jul 2014
Posts: 2523
Location: United States (IL)
Concentration: Finance, Economics
GPA: 3.92
WE: General Management (Transportation)

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
23 Mar 2016, 19:00
anni wrote: The area bounded by the curves x + y = 1 and x  y = 1 is
A. 3 B. 4 C. 2 D. 1 E. None x+y=1 > y=x+1 > slope 1. x+y=1 > y=x1 > slope 1. we have 2 parallel lines. xy=1 > y=x1 => slope 1. xy=1 > y=x+1 > slope 1. > we have another 2 parallel lines. i simply drew the lines, and for the sake of getting the image, try x=1 then y=1 for all the equations. i got a square like shape, with the points of intersection at (1; 0); (0; 1); (1; 0); (0; 1) since the diagonal of the square is the x axis, and it has a length of 2, we can apply the 454590 triangle rule, and see that 2=x*sqrt(2), where x is the side of the square. the side of the square is sqrt(2). now, we need to find the area > sqrt(2) squared is equal to 2.
_________________



Board of Directors
Joined: 17 Jul 2014
Posts: 2523
Location: United States (IL)
Concentration: Finance, Economics
GPA: 3.92
WE: General Management (Transportation)

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
23 Mar 2016, 19:03
anik19890 wrote: Bunuel wrote: Bumping for review and further discussion*. Get a kudos point for an alternative solution! *New project from GMAT Club!!! Check HEREwhy only (0,1) (1,0) should only pick? for x+y=1, if i chose (10,9) then it still become 1, can you please explain me what exactly the method of chosing number while finding area for this type of math you would find more points on THE LINE, but we are asked for the area of the figure when the 4 lines intersect. the 4 points of intersection are as shown in the figure in bunuel's post.
_________________



Manager
Joined: 14 Jun 2016
Posts: 71
Location: India
WE: Engineering (Manufacturing)

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
06 Aug 2017, 08:56
Excellent question... Tested understanding of Inequalities, Geometry and visualization... Is it a Q 51 level question?
_________________
Please help me with Kudos dear friendsneed few more to reach the next level. Thanks.



Senior Manager
Joined: 15 Jan 2017
Posts: 342

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
19 Aug 2017, 07:56
I have a query with the wording of the question it says : The area bounded by the curves x + y = 1, x  y = 1 is A. 3 B. 4 C. 2 D. 1 E. None
Based on answers here it appears we consider them as four straight lines (not curves). Curves usually are written by x^2 + y^2 format; but since it said curves I thought it would be circular> so in case its a non  square in the equation;I assume it to be lines not curves?? Will keep in mind in case I come across such language/ format later



Senior Manager
Joined: 29 Jun 2017
Posts: 432
GPA: 4
WE: Engineering (Transportation)

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
30 Aug 2017, 08:49
Answer is C:An easy question instead <700 probably x+y=1 , gives 2 equations x+y = + 1 and x+y =1 xy =1 gives xy=1 and xy = 1 we know they will form an enclosed figure on x and y axis. so directly find the points = put x=0 and y=0 we get (0,1) (0,1) (1,0) (1,0) when u actually plot the distance between opposite points are = 2 on each diogonal which cut at 90 degrees at O , origin there fore A = 0.5 D1D2 = 0.5x2x2 = 2 which is C
_________________
Give Kudos for correct answer and/or if you like the solution.



Director
Joined: 31 Jul 2017
Posts: 512
Location: Malaysia
GPA: 3.95
WE: Consulting (Energy and Utilities)

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
05 Feb 2018, 21:59
anni wrote: The area bounded by the curves x + y = 1 and x  y = 1 is
A. 3 B. 4 C. 2 D. 1 E. None The total Area = \(4*\frac{1}{2}*1*1\)
_________________
If my Post helps you in Gaining Knowledge, Help me with KUDOS.. !!



NonHuman User
Joined: 09 Sep 2013
Posts: 12359

Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
Show Tags
31 Mar 2019, 02:51
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________




Re: The area bounded by the curves x + y = 1 andx  y = 1 is
[#permalink]
31 Mar 2019, 02:51






