GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 May 2019, 06:25

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

The figure above represents a box that has the shape of a cube. What i

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 55266
The figure above represents a box that has the shape of a cube. What i  [#permalink]

Show Tags

New post 26 Apr 2019, 03:12
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

71% (00:56) correct 29% (01:08) wrong based on 77 sessions

HideShow timer Statistics

Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 7684
Re: The figure above represents a box that has the shape of a cube. What i  [#permalink]

Show Tags

New post 26 Apr 2019, 04:37
1
1
Image
The figure above represents a box that has the shape of a cube. What is the volume of the box?
Any regular figure, that is any figure with all sides equal, will just require any one dimension, length, diagonal, altitude, area or volume to know the remaining as all are based on one variable, that is side.
Same is the case here in cube.


(1) PR = 10 cm
Diagonal of a side is known-> sides can be known-> volume can be calculated.
side = \(5\sqrt{2}\).. Volume = \((5\sqrt{2})^3\).

(2) \(QT = 5\sqrt{6}\) cm
QT is the diagonal of cube = \(\sqrt{3*side^2}=side\sqrt{3}=5\sqrt{6}...side=\) \(5\sqrt{2}\).. Volume = \((5\sqrt{2})^3\).

D
_________________
examPAL Representative
User avatar
P
Joined: 07 Dec 2017
Posts: 1056
Re: The figure above represents a box that has the shape of a cube. What i  [#permalink]

Show Tags

New post 27 Apr 2019, 13:55
The Logical approach to this question is simple and extremely fast: when it comes to regular solids - just like regular polygons - any given measurement (side, diagonal, surface area, volume, etc.) is enough on order to find any other measurement. Thus, since both statements provide such measurements, they each suffice on their own and the correct answer is (D).

Posted from my mobile device
_________________
CEO
CEO
User avatar
V
Joined: 12 Sep 2015
Posts: 3724
Location: Canada
Re: The figure above represents a box that has the shape of a cube. What i  [#permalink]

Show Tags

New post 09 May 2019, 07:19
1
Top Contributor
Bunuel wrote:
Image
The figure above represents a box that has the shape of a cube. What is the volume of the box?

(1) PR = 10 cm
(2) QT = 5√6 cm
Attachment:
2019-04-26_1410.png


Target question: What is the volume of the box?

IMPORTANT: For geometry Data Sufficiency questions, we are typically checking to see whether the statements "lock" a particular angle, length, or shape into having just one possible measurement.
This concept is discussed in much greater detail in the video below.

This technique can save a lot of time.

Notice that there are infinitely-many cubes...
Image
...and, for each cube, we have different measurements for PR and QT, AND each one of these unique cubes has its very own volume.
So, if a statement LOCKS in the precise measurements of the cube, then that statement must be sufficient.

Statement 1: PR = 10 cm
Among the infinitely-many cubes that exist in the universe, ONLY ONE cube is such that PR = 10 cm
Since statement 1 locks in the size of the cube, it is SUFFICIENT

Statement 2: QT = 5√6 cm
Among the infinitely-many cubes that exist in the universe, ONLY ONE cube is such that QT = 5√6 cmcm
Since statement 2 locks in the size of the cube, it is SUFFICIENT

Answer: D

Cheers,
Brent

RELATED VIDEO FROM MY COURSE

_________________
Test confidently with gmatprepnow.com
Image
Manager
Manager
avatar
B
Joined: 27 Nov 2015
Posts: 97
GMAT ToolKit User
Re: The figure above represents a box that has the shape of a cube. What i  [#permalink]

Show Tags

New post 09 May 2019, 12:36
chetan2u wrote:
Image
The figure above represents a box that has the shape of a cube. What is the volume of the box?
Any regular figure, that is any figure with all sides equal, will just require any one dimension, length, diagonal, altitude, area or volume to know the remaining as all are based on one variable, that is side.
Same is the case here in cube.


(1) PR = 10 cm
Diagonal of a side is known-> sides can be known-> volume can be calculated.
side = \(5\sqrt{2}\).. Volume = \((5\sqrt{2})^3\).

(2) \(QT = 5\sqrt{6}\) cm
QT is the diagonal of cube = \(\sqrt{3*side^2}=side\sqrt{3}=5\sqrt{6}...side=\) \(5\sqrt{2}\).. Volume = \((5\sqrt{2})^3\).

D


could you kindly elaborate on the equation more please?
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 14194
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: The figure above represents a box that has the shape of a cube. What i  [#permalink]

Show Tags

New post 09 May 2019, 17:29
Hi All,

We're told that the figure above represents a box that has the shape of a CUBE. We're asked for the is the volume of the cube. While this question might appear a bit 'scary', there's a great 'logic shortcut' built into it - since we're dealing with a CUBE, we know that all of the dimensions are EQUAL. By extension, if we know ANY length connecting two of the 8 vertices on the cube, then we can figure out ALL of the other lengths (using other Geometry formulas, although we won't actually have to do any of that math here) - and ultimately determine the volume.

1) PR = 10 cm

Length PR is a diagonal that forms on each face of the cube, so it would be the hypotenuse of a 45/45/90 right triangle. With that measurement, we could calculate the exact values of the sides and calculate the volume. There would be only one answer.

Fact 1 is SUFFICIENT

2) QT = 5√6 cm

When dealing with a 'rectangular solid', the formula for calculating the length from one 'corner' of the shape to the 'opposite opposite' corner is:
√(L^2 + W^2 + H^2)

Since we're dealing with a cube, we know that the length, width and height are the SAME. We can refer to all of those lengths as "X", which gives us:
√(X^2 + X^2 + X^2) = √(3X^2) = 5√6

With one variable and one equation, we CAN solve for the value of X - and there would be just one value, so we could calculate the volume of the cube.
Fact 2 is SUFFICIENT

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/
GMAT Club Bot
Re: The figure above represents a box that has the shape of a cube. What i   [#permalink] 09 May 2019, 17:29
Display posts from previous: Sort by

The figure above represents a box that has the shape of a cube. What i

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.