Last visit was: 19 Nov 2025, 22:20 It is currently 19 Nov 2025, 22:20
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
mehdiov
Joined: 22 Jun 2010
Last visit: 13 Oct 2011
Posts: 18
Own Kudos:
1,052
 [66]
Given Kudos: 1
Posts: 18
Kudos: 1,052
 [66]
3
Kudos
Add Kudos
62
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,395
 [20]
4
Kudos
Add Kudos
16
Bookmarks
Bookmark this Post
General Discussion
User avatar
mehdiov
Joined: 22 Jun 2010
Last visit: 13 Oct 2011
Posts: 18
Own Kudos:
Given Kudos: 1
Posts: 18
Kudos: 1,052
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,395
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,395
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mehdiov
Bunuel
mehdiov
The positive integers r, s, and t are such that r is divisible by s
and s is divisible by t. Is r even?
(1) st is odd.
(2) rt is even.

(1) \(st=odd\), clearly not sufficient as no info about \(r\), for example if \(r=6\), \(s=1\) and \(t=1\) then answer is YES but if \(r=3\), \(s=1\) and \(t=1\) then the answer is NO.

(2) \(rt=even\). For product of 2 integers to be even either one or both must be even. Can \(r\) not to be even? The only chance would be if \(t\) is even and \(r\) is odd. Let's check if this scenario is possible: if \(t\) is even, so must be \(s\), as \(s\) is divisible by \(t\) (if an integer is divisible by even it's even too). Now, if \(s\) is even so must be \(r\) by the very same reasoning. So scenario when \(r\) is not even is not possible --> \(r=even\). Sufficient.

Answer: B.
many thanks looks easy after the explanation :)

Do you have an idea about the level of this question ?

Not very hard (600+) but tricky, as it's C-trap question: the question which is obviously sufficient if we take statements together. When we see such questions we should become very suspicious.
User avatar
frank1
Joined: 24 Apr 2010
Last visit: 11 Dec 2010
Posts: 43
Own Kudos:
Posts: 43
Kudos: 24
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel


(1) \(st=odd\), clearly not sufficient as no info about \(r\), for example if \(r=6\), \(s=1\) and \(t=1\) then answer is YES but if \(r=3\), \(s=1\) and \(t=1\) then the answer is NO.
Answer: B.
thanks...i was able to get to B but may be in 3 minutes.....
i complicated the question thinking like 2 4 8 and not thinking infact one can be one number or 2 numbers can be same 8 2 2 and so on...
User avatar
fluke
User avatar
Retired Moderator
Joined: 20 Dec 2010
Last visit: 24 Oct 2013
Posts: 1,099
Own Kudos:
Given Kudos: 376
Posts: 1,099
Kudos: 5,095
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jamifahad
The positive integers r, s, and t are such that r is divisible by s and s is divisible by t. Is r even?
(1) st is odd.
(2) rt is even.

r/s->Integer
s/t->Integer

(1) st is odd.
Both s and t are odd.

r=9; s=3; t=1
r=6; s=3; t=1
Not Sufficient.

(2) rt is even.
Either r or t or both are even.
r=even. Fantastic.
t=Even; s becomes even; t has to be even.

See this:
s/t=Integer; t=Even; s=Even*Integer=Even;
r/s=Integer; s=Even; r=Even*Integer=Even;

So, r is definitely even.
Sufficient.

Ans: "B"
User avatar
subhashghosh
User avatar
Retired Moderator
Joined: 16 Nov 2010
Last visit: 25 Jun 2024
Posts: 896
Own Kudos:
Given Kudos: 43
Location: United States (IN)
Concentration: Strategy, Technology
Products:
Posts: 896
Kudos: 1,279
Kudos
Add Kudos
Bookmarks
Bookmark this Post
(1)

st is odd means that s and t are odd, but r can be even or odd

e.g r = 10, s = 5, t = 1

r = 15, s = 5, t = 1

Insufficient

(2)

If rt is even then at least one of t or r is even

So r = k*s

s = m*t

=> r = k*m*t (where k and m are positive integers)


=> rt = r * r/(km) = r^2/km is an even integer (as per question)

=> r^2 is even

=> r is even

Sufficient

Answer - B
User avatar
PathFinder007
Joined: 10 Mar 2014
Last visit: 21 Oct 2018
Posts: 129
Own Kudos:
Given Kudos: 13
Posts: 129
Kudos: 733
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
mehdiov
The positive integers r, s, and t are such that r is divisible by s
and s is divisible by t. Is r even?
(1) st is odd.
(2) rt is even.

(1) \(st=odd\), clearly not sufficient as no info about \(r\), for example if \(r=6\), \(s=1\) and \(t=1\) then answer is YES but if \(r=3\), \(s=1\) and \(t=1\) then the answer is NO.

(2) \(rt=even\). For product of 2 integers to be even either one or both must be even. Can \(r\) not to be even? The only chance would be if \(t\) is even and \(r\) is odd. Let's check if this scenario is possible: if \(t\) is even, so must be \(s\), as \(s\) is divisible by \(t\) (if an integer is divisible by even it's even too). Now, if \(s\) is even so must be \(r\) by the very same reasoning. So scenario when \(r\) is not even is not possible --> \(r=even\). Sufficient.

Answer: B.

HI Bunnel,

I have a doubt on this.

Generally we treat both the statements as seprate statements. then why are you mixing them.

If I will go with st2 i can r can be even or odd because rt = even ( r and t both can be even or one of them is even) now if we refer even to r and t then st1 will contradict.

is this the reason you are not considering both r and t as even?

Please clarify

Thanks.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,395
Kudos
Add Kudos
Bookmarks
Bookmark this Post
PathFinder007
Bunuel
mehdiov
The positive integers r, s, and t are such that r is divisible by s
and s is divisible by t. Is r even?
(1) st is odd.
(2) rt is even.

(1) \(st=odd\), clearly not sufficient as no info about \(r\), for example if \(r=6\), \(s=1\) and \(t=1\) then answer is YES but if \(r=3\), \(s=1\) and \(t=1\) then the answer is NO.

(2) \(rt=even\). For product of 2 integers to be even either one or both must be even. Can \(r\) not to be even? The only chance would be if \(t\) is even and \(r\) is odd. Let's check if this scenario is possible: if \(t\) is even, so must be \(s\), as \(s\) is divisible by \(t\) (if an integer is divisible by even it's even too). Now, if \(s\) is even so must be \(r\) by the very same reasoning. So scenario when \(r\) is not even is not possible --> \(r=even\). Sufficient.

Answer: B.

HI Bunnel,

I have a doubt on this.

Generally we treat both the statements as seprate statements. then why are you mixing them.

If I will go with st2 i can r can be even or odd because rt = even ( r and t both can be even or one of them is even) now if we refer even to r and t then st1 will contradict.

is this the reason you are not considering both r and t as even?

Please clarify

Thanks.

The statements do not contradict: st is odd and rt is even is possible when r is even and both s and t are odd.
avatar
skysailor
Joined: 09 Apr 2017
Last visit: 26 Mar 2020
Posts: 24
Own Kudos:
Given Kudos: 31
Location: United States
GMAT 1: 690 Q47 V38
GMAT 2: 720 Q48 V41
GPA: 3.5
GMAT 2: 720 Q48 V41
Posts: 24
Kudos: 15
Kudos
Add Kudos
Bookmarks
Bookmark this Post
This is how I solved it:

Is r even?

r is divisible by s, hence r = ns
s is divisible by t, hence s = mt
combining, r = nmt

1-> st = odd. This implies, both s and t are odd. no impact on r. insuff.
2 -> rt = even
Hence, r = even or t = even or both = even
If t = even, then r = nmt = even
If r = odd, then r is even for rt = even
Suff.
avatar
harikrish
Joined: 05 Nov 2014
Last visit: 20 Nov 2018
Posts: 74
Own Kudos:
Given Kudos: 113
Location: India
Concentration: Strategy, Operations
GMAT 1: 580 Q49 V21
GPA: 3.75
Products:
GMAT 1: 580 Q49 V21
Posts: 74
Kudos: 85
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The positive integers r, s, and t are such that r is divisible by s and s is divisible by t. Is r even?

(1) st is odd.
(2) rt is even.

Solution:

The Tricky part in this question is to remember that r,s and t are integers.

Statement 1: No information about r is given. r can be either even or odd. Insufficient.

Statement 2: r has to be even as Odd number divided by odd will never yield a even number and Odd number divided by even will not yield a integer.
Therefore r must be even.

Answer :Option B.
User avatar
roadrunner
User avatar
Current Student
Joined: 23 Jul 2015
Last visit: 05 Sep 2023
Posts: 122
Own Kudos:
Given Kudos: 31
Posts: 122
Kudos: 142
Kudos
Add Kudos
Bookmarks
Bookmark this Post
r = sx
s = ty

r = tyx

1. st is odd
O = O*y ==> y = odd
r = O*O*x.. we don't know x. Therefore, not sufficient

2. rt = even
r = tyx
O=E*y*x or
E = O*y*x

evaluate whether both outcomes are possible.
when r is odd
t, y, and x must be odd which is not possible since t is even in this case.

thus, r is even

Ans. B
User avatar
Nunuboy1994
Joined: 12 Nov 2016
Last visit: 24 Apr 2019
Posts: 558
Own Kudos:
Given Kudos: 167
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
GPA: 2.66
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
Posts: 558
Kudos: 124
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mehdiov
The positive integers r, s, and t are such that r is divisible by s and s is divisible by t. Is r even?

(1) st is odd.
(2) rt is even.

The thing about these problems is that even though they appear to be very simple math they are designed to be very misleading

Statement 1

you could have 12 3 1 or 9 3 1

insuff

Statement 2

R cannot be odd because t has to be a multiple of 2- - because t has to be a factor of r

suff

B
avatar
zanaik89
Joined: 19 Aug 2016
Last visit: 29 Nov 2019
Posts: 54
Own Kudos:
Given Kudos: 30
Posts: 54
Kudos: 8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
mehdiov
The positive integers r, s, and t are such that r is divisible by s and s is divisible by t. Is r even?

(1) st is odd.
(2) rt is even.

(1) \(st=odd\), clearly not sufficient as no info about \(r\), for example if \(r=6\), \(s=1\) and \(t=1\) then answer is YES but if \(r=3\), \(s=1\) and \(t=1\) then the answer is NO.

(2) \(rt=even\). For product of 2 integers to be even either one or both must be even. Can \(r\) not to be even? The only chance would be if \(t\) is even and \(r\) is odd. Let's check if this scenario is possible: if \(t\) is even, so must be \(s\), as \(s\) is divisible by \(t\) (if an integer is divisible by even it's even too). Now, if \(s\) is even so must be \(r\) by the very same reasoning. So scenario when \(r\) is not even is not possible --> \(r=even\). Sufficient.

Answer: B.


What happens when t is odd?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,395
Kudos
Add Kudos
Bookmarks
Bookmark this Post
zanaik89
Bunuel
mehdiov
The positive integers r, s, and t are such that r is divisible by s and s is divisible by t. Is r even?

(1) st is odd.
(2) rt is even.

(1) \(st=odd\), clearly not sufficient as no info about \(r\), for example if \(r=6\), \(s=1\) and \(t=1\) then answer is YES but if \(r=3\), \(s=1\) and \(t=1\) then the answer is NO.

(2) \(rt=even\). For product of 2 integers to be even either one or both must be even. Can \(r\) not to be even? The only chance would be if \(t\) is even and \(r\) is odd. Let's check if this scenario is possible: if \(t\) is even, so must be \(s\), as \(s\) is divisible by \(t\) (if an integer is divisible by even it's even too). Now, if \(s\) is even so must be \(r\) by the very same reasoning. So scenario when \(r\) is not even is not possible --> \(r=even\). Sufficient.

Answer: B.


What happens when t is odd?

For (2) if t is odd then r must be even right away, because rt=even.
User avatar
exc4libur
Joined: 24 Nov 2016
Last visit: 22 Mar 2022
Posts: 1,684
Own Kudos:
Given Kudos: 607
Location: United States
Posts: 1,684
Kudos: 1,447
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mehdiov
The positive integers r, s, and t are such that r is divisible by s and s is divisible by t. Is r even?

(1) st is odd.
(2) rt is even.

Rule:
EVEN/EVEN = anything {not defined (divisibility by 0), even, odd, proper fraction}
ODD/ODD = odd or proper fraction
EVEN/ODD = even or proper fraction
ODD/EVEN = not defined or proper fraction

Given: if r/s=integer and s/t=integer, then r/t=integer.

(1) st is odd: then, s and t are both odd, only ODD*ODD=ODD; from this, we have two cases,
r/ODD=integer, then r=ODD/ODD, or r=EVEN/ODD, different answers insufficient.

(2) rt is even: then, r and t cannot be both odd; however, r=ODD/t=EVEN is not an integer,
so the only valid cases are r=EVEN/t=EVEN, and r=EVEN/t=ODD, sufficient.

Answer (B).
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,590
Own Kudos:
Posts: 38,590
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105390 posts
496 posts