Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

I am struggling to understand a concept - This seems like an error in MGMAT book - But i want to get it clarified and get a better understanding.

The questions is: Two number cubes with faces numbered 1 to 6 are rolled. What is the probability that that sum of the rolls is 8.

The Concern/Error: The successful outcomes is being counted as 2-6, 3-5,4-4, 5-3, 6-2. I think there needs to be another 4-4 that should be counted.

Because 4 in Dice 1 is different from 4 in dice 2.

Can someone please explain? Anyone facing same issue?

Say one die is red in color and the other is yellow. Why do we take two cases (2, 6) and (6, 2)? Because a 2 on the red one and 6 on the yellow one is different from 2 on the yellow one and 6 on the red one.

In the case of (4, 4), you have 4 on the red one and 4 on the yellow one. How can you have another (4, 4) case? The other one will also be 4 on the red one and 4 on the yellow one.
_________________

Re: Two number cubes with faces numbered 1 to 6 are rolled. What is the [#permalink]

Show Tags

03 Mar 2014, 21:47

1

This post received KUDOS

vingmat001 wrote:

I am struggling to understand a concept - This seems like an error in MGMAT book - But i want to get it clarified and get a better understanding.

The questions is: Two number cubes with faces numbered 1 to 6 are rolled. What is the probability that that sum of the rolls is 8.

The Concern/Error: The successful outcomes is being counted as 2-6, 3-5,4-4, 5-3, 6-2. I think there needs to be another 4-4 that should be counted.

Because 4 in Dice 1 is different from 4 in dice 2.

Can someone please explain? Anyone facing same issue?

Another way to visualize this problem is as shown in the attached diagram. In the test, you do not need to list all possible sums. Just look for the one you are interested in and count them.

Attachments

File comment: Probability of getting a defined sum from the sum of the numbers on two faces of a randomly rolled cube. 2 rolled cubes numbered 1 to 6.docx [58.01 KiB]
Downloaded 53 times

Basic conceptual question in probability [#permalink]

Show Tags

08 Jul 2017, 18:01

"Two number cubes with faces numbered 1 to 6 are rolled. What is the probability that the sum of the rolls is 8?" (MGMAT example question Guide 5 Chapter 4)

We all know the right way solve this question, which is - Total outcomes 36, Desirable outcomes 5. So, Probability is 5/36.

My question - why is the # of total outcomes not 11? Why are we considering the total outcomes of die-rolls, and not the total outcomes of the sum. If I consider the total outcomes of the sum = 2 to 12 then my probability is 1/11

Again, I completely understand that the right answer takes into effect the higher number of individual outcomes as below.

Sum # outcomes 2 1 3 2 4 3 . . .... 11 2 12 1

My question is what makes the solution of 1/11 wrong? Does it depend on what we define as an "outcome"?

Re: Basic conceptual question in probability [#permalink]

Show Tags

08 Jul 2017, 19:41

rbramkumar wrote:

"Two number cubes with faces numbered 1 to 6 are rolled. What is the probability that the sum of the rolls is 8?" (MGMAT example question Guide 5 Chapter 4)

We all know the right way solve this question, which is - Total outcomes 36, Desirable outcomes 5. So, Probability is 5/36.

My question - why is the # of total outcomes not 11? Why are we considering the total outcomes of die-rolls, and not the total outcomes of the sum. If I consider the total outcomes of the sum = 2 to 12 then my probability is 1/11

Again, I completely understand that the right answer takes into effect the higher number of individual outcomes as below.

Sum # outcomes 2 1 3 2 4 3 . . .... 11 2 12 1

My question is what makes the solution of 1/11 wrong? Does it depend on what we define as an "outcome"?

number of ways u get 8 2,6 6,2 3,5 5,3 4,4 = 5ways

Re: Basic conceptual question in probability [#permalink]

Show Tags

09 Jul 2017, 00:22

1

This post was BOOKMARKED

rbramkumar wrote:

"Two number cubes with faces numbered 1 to 6 are rolled. What is the probability that the sum of the rolls is 8?" (MGMAT example question Guide 5 Chapter 4)

We all know the right way solve this question, which is - Total outcomes 36, Desirable outcomes 5. So, Probability is 5/36.

My question - why is the # of total outcomes not 11? Why are we considering the total outcomes of die-rolls, and not the total outcomes of the sum. If I consider the total outcomes of the sum = 2 to 12 then my probability is 1/11

Again, I completely understand that the right answer takes into effect the higher number of individual outcomes as below.

Sum # outcomes 2 1 3 2 4 3 . . .... 11 2 12 1

My question is what makes the solution of 1/11 wrong? Does it depend on what we define as an "outcome"?

Since there are 1 outcome for getting sum of 2 and this pattern increases till 7(where the number of outcomes is 6) The maximum outcomes happen, when the sum if 7 {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)} and then the outcomes reduce till we reach 12 as sum, where the number of outcomes is 1(6,6)

The probability of an event happening = \(\frac{P(A)}{P(T)}\) where P(A) = Possibility_of_an_event_happening and P(T) = Total_number_of_outcomes

Here the Possibility of getting 8 is 5 {(2,6),(3,5),(4,4),(5,3),(6,2)} Total possibilities are 1+2+3+4+5+6+5+4+3+2+1 = 36.

Thats why the probability is 5/36 and not 1/11 as your had asked.

"Two number cubes with faces numbered 1 to 6 are rolled. What is the probability that the sum of the rolls is 8?" (MGMAT example question Guide 5 Chapter 4)

We all know the right way solve this question, which is - Total outcomes 36, Desirable outcomes 5. So, Probability is 5/36.

My question - why is the # of total outcomes not 11? Why are we considering the total outcomes of die-rolls, and not the total outcomes of the sum. If I consider the total outcomes of the sum = 2 to 12 then my probability is 1/11

Again, I completely understand that the right answer takes into effect the higher number of individual outcomes as below.

Sum # outcomes 2 1 3 2 4 3 . . .... 11 2 12 1

My question is what makes the solution of 1/11 wrong? Does it depend on what we define as an "outcome"?

Merging topics.

I think pushpitkc answers your question but just to make sure you understand. Not all sums out of 11 have the same number of occurrences. The sum of 2 can occur in 1 way - (1, 1) but the sum of two can occur in 2 way - (1, 2) and (2, 1).

Re: Two number cubes with faces numbered 1 to 6 are rolled. What is the [#permalink]

Show Tags

09 Jul 2017, 04:19

Thank you, pushpitkc and bunuel.

I understand the concept of "# on dice 1, # on dice 2" as an outcome, but was merely speculating how the answer looked like when we look at "SUM" as an outcome.

Let me elaborate my thoughts:

Former: Outcome (# on dice1, # on dice 2) Total outcomes 36

Latter: Outcome is defined as the "Sum" of the #s in 2 dices Total outcomes 11

I was getting derailed by the fact that the # Total outcomes needed to be 11, but I think the latter definition of "outcome" changes the basic assumption in Probability questions, i.e., equally likely outcomes (no bias). I missed the fact that this is a probability distribution where we (sum the area of desired/sum the total area under histogram) to get to the required probability. This seems to result in the original answer of 5/36.

There's really no need to think in the latter manner, just trying out different ways. Thanks and all the best!

Re: Two number cubes with faces numbered 1 to 6 are rolled. What is the [#permalink]

Show Tags

17 Oct 2017, 04:20

VeritasPrepKarishma wrote:

vingmat001 wrote:

I am struggling to understand a concept - This seems like an error in MGMAT book - But i want to get it clarified and get a better understanding.

The questions is: Two number cubes with faces numbered 1 to 6 are rolled. What is the probability that that sum of the rolls is 8.

The Concern/Error: The successful outcomes is being counted as 2-6, 3-5,4-4, 5-3, 6-2. I think there needs to be another 4-4 that should be counted.

Because 4 in Dice 1 is different from 4 in dice 2.

Can someone please explain? Anyone facing same issue?

Say one die is red in color and the other is yellow. Why do we take two cases (2, 6) and (6, 2)? Because a 2 on the red one and 6 on the yellow one is different from 2 on the yellow one and 6 on the red one.

In the case of (4, 4), you have 4 on the red one and 4 on the yellow one. How can you have another (4, 4) case? The other one will also be 4 on the red one and 4 on the yellow one.

Hi, I can understand why in the "total number of desired outcome" we count only 1 combination {4;4}

However, in the "total number of possible outcome" we put 36 = 6*6. This number include all the duplicated {1;1}, {2,2}.... {6,6}; Otherwise we don't have 36, we only have 30 = 6*5 possible outcome.

I am struggling to understand a concept - This seems like an error in MGMAT book - But i want to get it clarified and get a better understanding.

The questions is: Two number cubes with faces numbered 1 to 6 are rolled. What is the probability that that sum of the rolls is 8.

The Concern/Error: The successful outcomes is being counted as 2-6, 3-5,4-4, 5-3, 6-2. I think there needs to be another 4-4 that should be counted.

Because 4 in Dice 1 is different from 4 in dice 2.

Can someone please explain? Anyone facing same issue?

Say one die is red in color and the other is yellow. Why do we take two cases (2, 6) and (6, 2)? Because a 2 on the red one and 6 on the yellow one is different from 2 on the yellow one and 6 on the red one.

In the case of (4, 4), you have 4 on the red one and 4 on the yellow one. How can you have another (4, 4) case? The other one will also be 4 on the red one and 4 on the yellow one.

Hi, I can understand why in the "total number of desired outcome" we count only 1 combination {4;4}

However, in the "total number of possible outcome" we put 36 = 6*6. This number include all the duplicated {1;1}, {2,2}.... {6,6}; Otherwise we don't have 36, we only have 30 = 6*5 possible outcome.