GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 10 Dec 2018, 12:13

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • Free lesson on number properties

     December 10, 2018

     December 10, 2018

     10:00 PM PST

     11:00 PM PST

    Practice the one most important Quant section - Integer properties, and rapidly improve your skills.
  • Free GMAT Prep Hour

     December 11, 2018

     December 11, 2018

     09:00 PM EST

     10:00 PM EST

    Strategies and techniques for approaching featured GMAT topics. December 11 at 9 PM EST.

When 81 is divided by the cube of positive integer z, the remainder is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

e-GMAT Representative
User avatar
D
Joined: 04 Jan 2015
Posts: 2269
When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post Updated on: 07 Aug 2018, 06:02
3
7
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

89% (00:55) correct 11% (01:52) wrong based on 348 sessions

HideShow timer Statistics

When 81 is divided by the cube of positive integer z, the remainder is 17. Which of the following could be the value of z?
I. 2
II. 4
III. 8

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II and III


Here is a fresh question from e-GMAT. Go ahead and give it a shot!
Select your answer in the poll and provide your solution as a reply below.

Regards,
The e-GMAT Quant Team

P.S.: Solutions with clarity of thought and elegance will get kudos! :P

Here is an easier official question which tests a similar concept: http://gmatclub.com/forum/number-properties-question-from-qr-2nd-edition-ps-96030.html

To read all our articles: Must read articles to reach Q51

Image

_________________








Register for free sessions
Number Properties | Algebra |Quant Workshop

Success Stories
Guillermo's Success Story | Carrie's Success Story

Ace GMAT quant
Articles and Question to reach Q51 | Question of the week

Must Read Articles
Number Properties – Even Odd | LCM GCD | Statistics-1 | Statistics-2 | Remainders-1 | Remainders-2
Word Problems – Percentage 1 | Percentage 2 | Time and Work 1 | Time and Work 2 | Time, Speed and Distance 1 | Time, Speed and Distance 2
Advanced Topics- Permutation and Combination 1 | Permutation and Combination 2 | Permutation and Combination 3 | Probability
Geometry- Triangles 1 | Triangles 2 | Triangles 3 | Common Mistakes in Geometry
Algebra- Wavy line | Inequalities

Practice Questions
Number Properties 1 | Number Properties 2 | Algebra 1 | Geometry | Prime Numbers | Absolute value equations | Sets



| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com


Originally posted by EgmatQuantExpert on 05 May 2015, 05:19.
Last edited by EgmatQuantExpert on 07 Aug 2018, 06:02, edited 2 times in total.
e-GMAT Representative
User avatar
D
Joined: 04 Jan 2015
Posts: 2269
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post Updated on: 07 Aug 2018, 06:02
1
2
The correct answer is Option B

Dividend = Divisor*Quotient + Remainder

As per the question statement,

\(81 = z^{3}k+17\), where quotient k is a non-negative integer
From this equation, we get:

\(z^{3}k = 81 – 17\)
--> \(z^{3}k = 64\)
--> \(z^{3}k = 2^6\) . . . (1)

We are given that z is a positive integer. And, since k is the quotient, it will be an integer as well.

So, the following cases arise from Equation 1:
Case 1: \(z^3 = 2^6\) and k = 1
That is, z = \(2^2\) = 4

Case 2: \(z^3 = 2^3\) and \(k=2^3\)
That is, z = 2

Case 3:\(z^3 = 1\) and \(k = 2^6\)
That is, z = 1

So, by thinking through Equation 1, we have zeroed in on three possible values of z: {1, 2, 4}

Now, we know that Remainder is always less than the divisor.

So, from the question statement, we can write:

\(17 < z^3\)

That is, \(z^3 > 17\)

By testing the 3 possible values of z for this inequality, we see that only z = 4 satisfies this inequality.

Therefore, the only possible value of z is 4.

Hope you enjoyed doing this question! :)

Japinder

Image

_________________








Register for free sessions
Number Properties | Algebra |Quant Workshop

Success Stories
Guillermo's Success Story | Carrie's Success Story

Ace GMAT quant
Articles and Question to reach Q51 | Question of the week

Must Read Articles
Number Properties – Even Odd | LCM GCD | Statistics-1 | Statistics-2 | Remainders-1 | Remainders-2
Word Problems – Percentage 1 | Percentage 2 | Time and Work 1 | Time and Work 2 | Time, Speed and Distance 1 | Time, Speed and Distance 2
Advanced Topics- Permutation and Combination 1 | Permutation and Combination 2 | Permutation and Combination 3 | Probability
Geometry- Triangles 1 | Triangles 2 | Triangles 3 | Common Mistakes in Geometry
Algebra- Wavy line | Inequalities

Practice Questions
Number Properties 1 | Number Properties 2 | Algebra 1 | Geometry | Prime Numbers | Absolute value equations | Sets



| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com


Originally posted by EgmatQuantExpert on 05 May 2015, 05:22.
Last edited by EgmatQuantExpert on 07 Aug 2018, 06:02, edited 2 times in total.
Manager
Manager
avatar
Joined: 07 Apr 2015
Posts: 165
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post 05 May 2015, 06:11
1
81 divided by z^3 leaves a remainder of 17.

81 = q * 2^3 + 17
64 = q+z^3

Then I tried answer possibilities of 2, 4 and 8.

Only 2^3 = 64 fulfills the equation and yields a remainder of 17. So B.
Manager
Manager
User avatar
Joined: 18 Nov 2013
Posts: 79
Concentration: General Management, Technology
GMAT 1: 690 Q49 V34
Premium Member
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post Updated on: 05 May 2015, 19:54
1
Q 81 divided by \(z^{3}\) leaves a remainder of 17.

81 = \(z^{3}\) * k + 17 (where k is constant, some integer)
64 = \(z^{3}\) * k

get prime factors of 64 = \(2^{6}\)
now expression {64 = \(z^{3}\) * k} can be written as

    \(2^{6}\) = \(z^{3}\) * k

    1> \(2^{3}\) * 8 (where k=8) but \(2^{3}\) = 8 --> It is too small to give 17 as reminder

    2> \(4^{3}\) * 1 (where k=1)

Ans : D (both I and II valid)

Ahh :x :( .. saw my mistake

Ans : B
_________________

_______
- Cheers


+1 kudos if you like


Originally posted by UJs on 05 May 2015, 08:49.
Last edited by UJs on 05 May 2015, 19:54, edited 3 times in total.
Manager
Manager
avatar
Joined: 09 Jan 2013
Posts: 75
Concentration: Entrepreneurship, Sustainability
GMAT 1: 650 Q45 V34
GMAT 2: 740 Q51 V39
GRE 1: Q790 V650
GPA: 3.76
WE: Other (Pharmaceuticals and Biotech)
Reviews Badge
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post 05 May 2015, 18:22
1
When 81 divided by Z^3 leaves remainder 17. It means that the
17 < Z^3 < 81

The only option that fulfills this requirement is 4. You can workout 4^3 = 64. 81/64 leaves remainder 17.

Thus answer is B.
Manager
Manager
avatar
Joined: 27 Jan 2015
Posts: 126
Concentration: General Management, Entrepreneurship
GMAT 1: 670 Q44 V38
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post 05 May 2015, 19:28
1
[quote="EgmatQuantExpert"]When 81 is divided by the cube of positive integer z, the remainder is 17. Which of the following could be the value of z?
I. 2
II. 4
III. 8

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II and III



I got B.


We are given 81/z^3 has a remainder of 17. We are given possible values for Z, so I just plug them in:

I) z = 2 gives 81/2^3 which leaves a remainder of 1 (81/8 = 10 r 1), not a remainder of 17 so not correct

II)z = 4 gives 81/4^3 = 81/64 = 1 r 17<----- this fits

III) I already know that 8^3 is too big to be divisible by 81 with a remainder, so I don't check.

II is the only correct answer...
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post 24 Jun 2017, 07:36
EgmatQuantExpert wrote:
When 81 is divided by the cube of positive integer z, the remainder is 17. Which of the following could be the value of z?
I. 2
II. 4
III. 8

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II and III


We are given that when 81 is divided by the cube of positive integer z, the remainder is 17. Let’s test each Roman numeral to determine which could be z.

I. 2

2^3 = 8

Since a number divided by 8 cannot have a remainder that is greater than 7, z cannot be 2.

II. 4

4^3 = 64

81/64 = 1 remainder 17

z can be 4.

III. 8

8^3 = 512

81/512 = 0 remainder 81

z cannot be 8.

Answer: B
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Intern
Intern
avatar
B
Joined: 10 Jun 2014
Posts: 39
Location: India
Concentration: Operations, Finance
GPA: 4
WE: Manufacturing and Production (Energy and Utilities)
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post 01 Sep 2018, 02:36
EgmatQuantExpert wrote:
The correct answer is Option B

Dividend = Divisor*Quotient + Remainder

As per the question statement,

\(81 = z^{3}k+17\), where quotient k is a non-negative integer
From this equation, we get:

\(z^{3}k = 81 – 17\)
--> \(z^{3}k = 64\)
--> \(z^{3}k = 2^6\) . . . (1)

We are given that z is a positive integer. And, since k is the quotient, it will be an integer as well.

So, the following cases arise from Equation 1:
Case 1: \(z^3 = 2^6\) and k = 1
That is, z = \(2^2\) = 4

Case 2: \(z^3 = 2^3\) and \(k=2^3\)
That is, z = 2

Case 3:\(z^3 = 1\) and \(k = 2^6\)
That is, z = 1

So, by thinking through Equation 1, we have zeroed in on three possible values of z: {1, 2, 4}

Now, we know that Remainder is always less than the divisor.

So, from the question statement, we can write:

\(17 < z^3\)

That is, \(z^3 > 17\)

By testing the 3 possible values of z for this inequality, we see that only z = 4 satisfies this inequality.

Therefore, the only possible value of z is 4.

Hope you enjoyed doing this question! :)

Japinder

Image


81=Z^3 *k +17
Z^3 must be greater tha 17
CAN I SAY Z^3 MUST BE LESS THAN 81

then out of 2,4 & 8 only 4 satisfy the conditions

If I am not wrong anywhere then it is much easier way to choose the ans ...please help experts Bunuel chetan2u
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 7098
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post 01 Sep 2018, 02:53
janadipesh wrote:
EgmatQuantExpert wrote:
The correct answer is Option B

Dividend = Divisor*Quotient + Remainder

As per the question statement,

\(81 = z^{3}k+17\), where quotient k is a non-negative integer
From this equation, we get:

\(z^{3}k = 81 – 17\)
--> \(z^{3}k = 64\)
--> \(z^{3}k = 2^6\) . . . (1)

We are given that z is a positive integer. And, since k is the quotient, it will be an integer as well.

So, the following cases arise from Equation 1:
Case 1: \(z^3 = 2^6\) and k = 1
That is, z = \(2^2\) = 4

Case 2: \(z^3 = 2^3\) and \(k=2^3\)
That is, z = 2

Case 3:\(z^3 = 1\) and \(k = 2^6\)
That is, z = 1

So, by thinking through Equation 1, we have zeroed in on three possible values of z: {1, 2, 4}

Now, we know that Remainder is always less than the divisor.

So, from the question statement, we can write:

\(17 < z^3\)

That is, \(z^3 > 17\)

By testing the 3 possible values of z for this inequality, we see that only z = 4 satisfies this inequality.

Therefore, the only possible value of z is 4.

Hope you enjoyed doing this question! :)

Japinder

Image


81=Z^3 *k +17
Z^3 must be greater tha 17
CAN I SAY Z^3 MUST BE LESS THAN 81

then out of 2,4 & 8 only 4 satisfy the conditions

If I am not wrong anywhere then it is much easier way to choose the ans ...please help experts Bunuel chetan2u


Yes, you are correct. Z^3 will be between 17 and 81.
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

Manager
Manager
avatar
S
Joined: 10 Jan 2013
Posts: 156
Location: India
Concentration: General Management, Strategy
GMAT 1: 600 Q43 V30
GPA: 3.95
GMAT ToolKit User Reviews Badge
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post 01 Sep 2018, 04:52
1
I merely substituted the values in the options to solve.

chetan2u egmat can there be any other pitfall in such type of questions

Posted from my mobile device
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 7098
Re: When 81 is divided by the cube of positive integer z, the remainder is  [#permalink]

Show Tags

New post 01 Sep 2018, 07:43
1
saurabh9gupta wrote:
I merely substituted the values in the options to solve.

chetan2u egmat can there be any other pitfall in such type of questions

Posted from my mobile device



Wherever you are looking for a value of a variable and the choices give you different values as in this, you can surely substitute the choices and get your answer
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

GMAT Club Bot
Re: When 81 is divided by the cube of positive integer z, the remainder is &nbs [#permalink] 01 Sep 2018, 07:43
Display posts from previous: Sort by

When 81 is divided by the cube of positive integer z, the remainder is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.