Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

55 people live in an apartment complex with three fitness [#permalink]

Show Tags

14 Apr 2013, 16:17

2

This post received KUDOS

12

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

46% (01:17) correct
54% (01:00) wrong based on 361 sessions

HideShow timer Statistics

55 people live in an apartment complex with three fitness clubs (A, B, and C). Of the 55 residents, 40 residents are members of exactly one of the three fitness clubs in the complex. Are any of the 55 residents members of both fitness clubs A and C but not members of fitness club B?

(1) 2 of the 55 residents are members of all three of the fitness clubs in the apartment complex. (2) 8 of the 55 residents are members of fitness club B and exactly one other fitness club in the apartment complex.

Re: 55 people live in an apartment complex with three fitness cl [#permalink]

Show Tags

14 Apr 2013, 18:55

2

This post received KUDOS

Answer is C

I would use the 3 overlapping sets formula to evaluate whether the stat 1 and 2 are sufficient.

Total people = people enrolled in A + people enrolled in B + people enrolled in C - (people enrolled in A & B only + people enrolled in B & C only + people enrolled in A &C only ) - 2 (people enrolled in A, B, and C).

Equation based on question stem :

55 = 40 - (people enrolled in A & B only + people enrolled in B & C only + people enrolled in A &C only ) - 2 (people enrolled in A, B, and C).

Stmt 1 gives only 2 (people enrolled in A, B, and C) - Not Sufficient

Stmt 2 gives only (people enrolled in A & B only + people enrolled in B & C only + people enrolled in A &C only ) - Not Sufficient

Considering Stmt 1 and Stmt 2 people enrolled in A &C only can be calculated.

Re: 55 people live in an apartment complex with three fitness cl [#permalink]

Show Tags

14 Apr 2013, 22:05

2

This post received KUDOS

We know that 55-40 people are numbers of 2 or more clubs. Lets call a the members of only AC, b the members of only AB, c the members of only CB and d the members of all three. And consider n that are the members of none of those clubs! \(n+a+b+c+d=15\) Now the question is: is a >0? there are members in AC only?

1) tells us that d=2. We cannot say anything about a \(m+a+b+2=15\) 2)tells us that b+c=8.Again not sufficient \(n+a+8+d=15\)

1+2)\(n+a+8+2=15\) We cannot say anything about A. E
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Re: 55 people live in an apartment complex with three fitness cl [#permalink]

Show Tags

15 Apr 2013, 05:38

3

This post received KUDOS

The question does not specify if there are people not member of any clubs. So isn't E a possibility as well?

Assume there are 5 people not a part of any club
_________________

You've been walking the ocean's edge, holding up your robes to keep them dry. You must dive naked under, and deeper under, a thousand times deeper! - Rumi

http://www.manhattangmat.com/blog/index.php/author/cbermanmanhattanprep-com/ - This is worth its weight in gold

Economist GMAT Test - 730, Q50, V41 Aug 9th, 2013 Manhattan GMAT Test - 670, Q45, V36 Aug 11th, 2013 Manhattan GMAT Test - 680, Q47, V36 Aug 17th, 2013 GmatPrep CAT 1 - 770, Q50, V44 Aug 24th, 2013 Manhattan GMAT Test - 690, Q45, V39 Aug 30th, 2013 Manhattan GMAT Test - 710, Q48, V39 Sep 13th, 2013 GmatPrep CAT 2 - 740, Q49, V41 Oct 6th, 2013

GMAT - 770, Q50, V44, Oct 7th, 2013 My Debrief - http://gmatclub.com/forum/from-the-ashes-thou-shall-rise-770-q-50-v-44-awa-5-ir-162299.html#p1284542

Re: 55 people live in an apartment complex with three fitness cl [#permalink]

Show Tags

02 Jun 2014, 06:29

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

55 people live in an apartment complex with three fitness [#permalink]

Show Tags

21 Aug 2015, 10:58

Tagger wrote:

55 people live in an apartment complex with three fitness clubs (A, B, and C). Of the 55 residents, 40 residents are members of exactly one of the three fitness clubs in the complex. Are any of the 55 residents members of both fitness clubs A and C but not members of fitness club B?

(1) 2 of the 55 residents are members of all three of the fitness clubs in the apartment complex. (2) 8 of the 55 residents are members of fitness club B and exactly one other fitness club in the apartment complex.

Ans - D

(since the question does not mention that "every resident belongs to at least one fitness club")

Had the question included the above condition the answer would've been an easy C.

That's the beauty of GMAT math questions. It not only checks one's ability to solve a question but also his/her ability of analyzing the question. As they say, on good math question on GMAT will also check your verbal skills!

Re: 55 people live in an apartment complex with three fitness [#permalink]

Show Tags

30 Nov 2016, 22:59

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: 55 people live in an apartment complex with three fitness [#permalink]

Show Tags

03 Apr 2017, 11:36

1

This post received KUDOS

Tagger wrote:

55 people live in an apartment complex with three fitness clubs (A, B, and C). Of the 55 residents, 40 residents are members of exactly one of the three fitness clubs in the complex. Are any of the 55 residents members of both fitness clubs A and C but not members of fitness club B?

(1) 2 of the 55 residents are members of all three of the fitness clubs in the apartment complex. (2) 8 of the 55 residents are members of fitness club B and exactly one other fitness club in the apartment complex.

Can anybody please explain the second statement with a venn diagram ? What does the bold part means in venn diagram? 8 of the 55 residents are members of fitness club B and exactly one other fitness club in the apartment complex