May 24 10:00 PM PDT  11:00 PM PDT Join a FREE 1day workshop and learn how to ace the GMAT while keeping your fulltime job. Limited for the first 99 registrants. May 25 07:00 AM PDT  09:00 AM PDT Attend this webinar and master GMAT SC in 10 days by learning how meaning and logic can help you tackle 700+ level SC questions with ease. May 27 01:00 AM PDT  11:59 PM PDT All GMAT Club Tests are free and open on May 27th for Memorial Day! May 27 10:00 PM PDT  11:00 PM PDT Special savings are here for Magoosh GMAT Prep! Even better  save 20% on the plan of your choice, now through midnight on Tuesday, 5/27 May 30 10:00 PM PDT  11:00 PM PDT Application deadlines are just around the corner, so now’s the time to start studying for the GMAT! Start today and save 25% on your GMAT prep. Valid until May 30th.
Author 
Message 
TAGS:

Hide Tags

Intern
Joined: 31 Aug 2014
Posts: 21

A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
14 Sep 2015, 07:50
Question Stats:
81% (01:04) correct 19% (01:15) wrong based on 1408 sessions
HideShow timer Statistics
A certain high school has 5,000 students. Of these students, x are taking music, y are taking art, and z are taking both music and art. How many students are taking neither music nor art? (A) 5,000 – z (B) 5,000 – x – y (C) 5,000 – x + z (D) 5,000 – x – y – z (E) 5,000 – x – y + z og2016
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
Please press+ 1kudos if you appreciate this post and for motivation !!




Math Expert
Joined: 02 Sep 2009
Posts: 55271

A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
20 Oct 2015, 03:00
A certain high school has 5,000 students. Of these students, x are taking music, y are taking art, and z are taking both music and art. How many students are taking neither music nor art? (A) 5,000 − z (B) 5,000 − x − y (C) 5,000 − x + z (D) 5,000 − x − y − z (E) 5,000 − x − y + z Kudos for a correct solution.
_________________




Intern
Joined: 17 Aug 2015
Posts: 6

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
14 Sep 2015, 16:46
Easier formula to remember is Group1+ Group2 Both +Neither = Total (Source: Kaplan) So, solution is x + y  z + Neither = 5000 Neither = 5000  x  y + z ..Choice E!




Manager
Joined: 17 Aug 2015
Posts: 96
Location: India
Concentration: Strategy, General Management
GPA: 4
WE: Information Technology (Investment Banking)

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
14 Sep 2015, 08:02
ske wrote: A certain high school has 5,000 students. Of these students, x are taking music, y are taking art, and z are taking both music and art. How many students are taking neither music nor art?
(A) 5,000 – z (B) 5,000 – x – y (C) 5,000 – x + z (D) 5,000 – x – y – z (E) 5,000 – x – y + z
og2016 I believe the wording of the question is incorrect (for the options given)  when you say "take music", that means take either music or music and art. In that case here's the answer: Music U Art = Music + Art  Music n Art = (xz) + (yz)  z = x+y3z Total = 5000 So, people not taking any of these is: 5000  (x+y3z). Now, from the options, I understand that the question asked has the assumption that "take music" means "music only". In that case, the calculation becomes: 5000  (x+yz) = 5000  x  y + z So, (E) is the answer.
_________________
If you like this post, be kind and help me with Kudos!
Cheers!



Intern
Joined: 04 Sep 2015
Posts: 2

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
16 Sep 2015, 07:36
HardWorkBeatsAll wrote: I believe the wording of the question is incorrect (for the options given)  when you say "take music", that means take either music or music and art. In that case here's the answer: Music U Art = Music + Art  Music n Art = (xz) + (yz)  z = x+y3z
Total = 5000 So, people not taking any of these is: 5000  (x+y3z)
Thanks for submitting an explanation. It is correct to say that: Music U Art = Music + Art  Music n Art. However, your logic falls apart when you attribute Music = xz and Art = yz. This is wrong because (xz) and (yz) refers to the number of students who ONLY take music or who ONLY take art. So in your equation, you've subtracted the number of students who take both music and art three times over. It should be: x + y  z. That represents the number of students who took music OR art. Then, 5,000  (x + y  z) would give you the number of students who took neither. And you would have answer choice (E). Alternatively, if you want to follow your methodology of accounting for the students who took music ONLY and Art ONLY, use the following equation (which would still arrive at the same original equation for union of two sets): (x  z) + (y  z) + z = x + y  z.



Intern
Joined: 24 Dec 2014
Posts: 1

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
07 Oct 2015, 09:51
pdxyj wrote: HardWorkBeatsAll wrote: I believe the wording of the question is incorrect (for the options given)  when you say "take music", that means take either music or music and art. In that case here's the answer: Music U Art = Music + Art  Music n Art = (xz) + (yz)  z = x+y3z
Total = 5000 So, people not taking any of these is: 5000  (x+y3z)
Thanks for submitting an explanation. It is correct to say that: Music U Art = Music + Art  Music n Art. However, your logic falls apart when you attribute Music = xz and Art = yz. This is wrong because (xz) and (yz) refers to the number of students who ONLY take music or who ONLY take art. So in your equation, you've subtracted the number of students who take both music and art three times over. It should be: x + y  z. That represents the number of students who took music OR art. Then, 5,000  (x + y  z) would give you the number of students who took neither. And you would have answer choice (E). Alternatively, if you want to follow your methodology of accounting for the students who took music ONLY and Art ONLY, use the following equation (which would still arrive at the same original equation for union of two sets): (x  z) + (y  z) + z = x + y  z. from the options, I understand that the question asked has the assumption that "take music" means "music only". In that case, the calculation becomes: 5000  (x+yz) = 5000  x  y + z So, (E) is the answer.



Intern
Joined: 21 Nov 2014
Posts: 2
Concentration: International Business, Technology

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
20 Oct 2015, 04:14
As Total = A+Bboth+Neither, then Neither = 5000xy+z.
The answer is E.



SVP
Status: It's near  I can see.
Joined: 13 Apr 2013
Posts: 1674
Location: India
Concentration: International Business, Operations
GPA: 3.01
WE: Engineering (Real Estate)

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
20 Oct 2015, 04:29
Bunuel wrote: A certain high school has 5,000 students. Of these students, x are taking music, y are taking art, and z are taking both music and art. How many students are taking neither music nor art?
(A) 5,000 − z (B) 5,000 − x − y (C) 5,000 − x + z (D) 5,000 − x − y − z (E) 5,000 − x − y + z
Kudos for a correct solution. My Solution:
Total = 5000
Total = X + Y Z+Neither
Neither = Total  X Y +Z
Neither = 5000XY+Z Option E Answer
_________________
"Do not watch clock; Do what it does. KEEP GOING."



Retired Moderator
Joined: 29 Apr 2015
Posts: 837
Location: Switzerland
Concentration: Economics, Finance
WE: Asset Management (Investment Banking)

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
20 Oct 2015, 09:46
Bunuel wrote: A certain high school has 5,000 students. Of these students, x are taking music, y are taking art, and z are taking both music and art. How many students are taking neither music nor art?
(A) 5,000 − z (B) 5,000 − x − y (C) 5,000 − x + z (D) 5,000 − x − y − z (E) 5,000 − x − y + z
Kudos for a correct solution. The simple formula for overlapping sets is as follows: Total = Group A + Group B  Both + NeitherIn this case we have 5,000 = x + y  z + n Solving for N equals 5,000 − x − y + z Answer E
_________________
Saving was yesterday, heat up the gmatclub.forum's sentiment by spending KUDOS!
PS Please send me PM if I do not respond to your question within 24 hours.



CEO
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2933
Location: India
GMAT: INSIGHT
WE: Education (Education)

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
20 Oct 2015, 09:55
Bunuel wrote: A certain high school has 5,000 students. Of these students, x are taking music, y are taking art, and z are taking both music and art. How many students are taking neither music nor art?
(A) 5,000 − z (B) 5,000 − x − y (C) 5,000 − x + z (D) 5,000 − x − y − z (E) 5,000 − x − y + z
Kudos for a correct solution. Students taking Music and art both = z Students taking Music only = x  z Students taking Art only = y  z Students taking Music and/or art = (xz) + (yz) + z = x + y  z Students without Music and Art = 5000  (x + y  z) Students without Music and Art = 5000  x  y + z Answer: option E
_________________
Prosper!!!GMATinsightBhoopendra Singh and Dr.Sushma Jha email: info@GMATinsight.com I Call us : +919999687183 / 9891333772 Online OneonOne Skype based classes and Classroom Coaching in South and West Delhihttp://www.GMATinsight.com/testimonials.htmlACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION



Manager
Joined: 20 Aug 2015
Posts: 97
Location: India
GPA: 3

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
21 Oct 2015, 10:32
Total = Ppl taking Art + Ppl taking Music  Ppl taking both + Ppl taking none =>5000 = x + y z + None =>None = 5000  x  y + z
Answer E.



EMPOWERgmat Instructor
Status: GMAT Assassin/CoFounder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 14198
Location: United States (CA)

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
21 Oct 2015, 11:07
Hi All, While this question can be solved Algebraically, it can also be solved by TESTing VALUES and taking some basic notes: We're given a series of facts to work with: 1) A certain high school has 5,000 students. 2) Of these students: X are taking music, Y are taking art, and Z are taking BOTH music and art. We're asked how many students are taking NEITHER music nor art? Let's TEST X = 2 Y = 2 Z = 1 So, we have 2 students taking music, 2 taking art and 1 taking BOTH music and art. That 1 person has been counted TWICE though (once in the music 'group' and once in the art 'group'), so what we really have is... 1 student taking JUST music 1 student taking JUST art 1 student taking BOTH music and art Total = 3 students We're asked for the total number of students who are taking NEITHER Course. That is 5000  3 = 4997. So that's the answer that we're looking for when X=2, Y=2 and Z=1. There's only one answer that matches... Final Answer: GMAT assassins aren't born, they're made, Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****
Rich Cohen
CoFounder & GMAT Assassin
Special Offer: Save $75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/



Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 7372
GPA: 3.82

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
22 Oct 2015, 02:00
Forget conventional ways of solving math questions. In PS, IVY approach is the easiest and quickest way to find the answer. A certain high school has 5,000 students. Of these students, x are taking music, y are taking art, and z are taking both music and art. How many students are taking neither music nor art? (A) 5,000 − z (B) 5,000 − x − y (C) 5,000 − x + z (D) 5,000 − x − y − z (E) 5,000 − x − y + z The number of students who take music or art is X+YZ( Z students take also art among the students who take music and the same Z students are included in the students who take art, so the number of students who take music or art is X+YZ). The number of students who take neither music nor art is 5000(X+YZ) = 5000XY+Z. The answer is (E)
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spareThe oneandonly World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy. "Only $149 for 3 month Online Course""Free Resources30 day online access & Diagnostic Test""Unlimited Access to over 120 free video lessons  try it yourself"



Current Student
Joined: 31 Jan 2016
Posts: 21

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
08 Aug 2016, 16:12
Can someone show me how to solve this using the Matrix Method?
For some reason I cannot find E, I find D as the answer.



Intern
Joined: 29 Jun 2016
Posts: 43

A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
11 Aug 2016, 11:51
g3lo18 wrote: Can someone show me how to solve this using the Matrix Method?
For some reason I cannot find E, I find D as the answer. Hope this is helpful. 5000=x+yz+n As z is counted twice both in x and also in y, we should subtract once to get the actual count. Let n be the number of students taking neither music nor art so n=5000xy+z answer option (E)
Attachments
venn.jpg [ 22.93 KiB  Viewed 12601 times ]



Manager
Status: On a 600long battle
Joined: 22 Apr 2016
Posts: 136
Location: Hungary
Concentration: Accounting, Leadership
GMAT 1: 410 Q18 V27 GMAT 2: 490 Q35 V23

A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
25 Apr 2017, 21:42
The items in the yellow boxes are the ones given to us (the 'y' is also given) and the green one is what we're looking for: 5000x(yz) 5000xy+zOA
_________________
"When the going gets tough, the tough gets going!"
Welcoming tips/suggestions/advices (you name it) to help me achieve a 600



Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 6231
Location: United States (CA)

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
29 Apr 2017, 09:05
ske wrote: A certain high school has 5,000 students. Of these students, x are taking music, y are taking art, and z are taking both music and art. How many students are taking neither music nor art?
(A) 5,000 – z (B) 5,000 – x – y (C) 5,000 – x + z (D) 5,000 – x – y – z (E) 5,000 – x – y + z We can use the following formula: Total students = # taking music + # taking art  # taking both + # taking neither 5,000 = x + y  z + neither 5,000  x  y + z = neither Answer: E
_________________
5star rated online GMAT quant self study course See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews If you find one of my posts helpful, please take a moment to click on the "Kudos" button.



Intern
Joined: 12 Jul 2017
Posts: 18

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
12 Jul 2017, 10:44
5000  (x+yz) = 5000  x  y + z
So, (E) is the answer. 5,000  x  y + z = neither
Answer: E



NonHuman User
Joined: 09 Sep 2013
Posts: 11010

Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
Show Tags
28 Jul 2018, 16:19
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________




Re: A certain high school has 5,000 students. Of these students, x are
[#permalink]
28 Jul 2018, 16:19






