Last visit was: 17 Jul 2025, 06:23 It is currently 17 Jul 2025, 06:23
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 17 Jul 2025
Posts: 102,601
Own Kudos:
Given Kudos: 98,220
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,601
Kudos: 742,147
 [34]
6
Kudos
Add Kudos
28
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 17 Jul 2025
Posts: 102,601
Own Kudos:
Given Kudos: 98,220
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,601
Kudos: 742,147
 [17]
10
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 17 Jul 2025
Posts: 102,601
Own Kudos:
742,147
 [7]
Given Kudos: 98,220
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,601
Kudos: 742,147
 [7]
1
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
General Discussion
User avatar
ynaikavde
Joined: 22 Jul 2011
Last visit: 21 Jun 2024
Posts: 71
Own Kudos:
328
 [4]
Given Kudos: 42
Status:Gmat Prep
Posts: 71
Kudos: 328
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
radius = distance between center and point = \(\sqrt{(2-(-4))^2+(3-4)^2}\) =\(\sqrt{37}\)

use this distance formula on all the the options they should have same distance. option D. (–3, –2) has the same distance Answer is D.
avatar
OptimusPrepJanielle
Joined: 06 Nov 2014
Last visit: 08 Sep 2017
Posts: 1,779
Own Kudos:
1,447
 [3]
Given Kudos: 23
Expert
Expert reply
Posts: 1,779
Kudos: 1,447
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
A circle has a center at P = (–4, 4) and passes through the point (2, 3). Through which of the following must the circle also pass?

A. (1, 1)
B. (1, 7)
C. (–1, 9)
D. (–3, –2)
E. (–9, 1)


Kudos for a correct solution.

Since this is a circle, the distance between any point and the radius will always be the same.
Equation of circle is given by formula, (x-h)^2 + (y-k)^2 = r^2 where (h,k) is center of circle.
Hence r^2 = (2+4)^ 2+ (3 - 4)^2
So, r^2 = 37
So, r = sqrt(37)

This should be valid for any other point as well.
Since we use terms like (x-h)^2 and (y-k)^2 i.e. squaring the expression, let us first try the option D because it contains the same numerical values as the point given in the question.
So, r^2 = (-3+4)^ 2+ (-2 - 4)^2
= 37
Hence this is the point on circle.
Hence option D.

--
Optimus Prep's GMAT On Demand course for only $299 covers all verbal and quant. concepts in detail. Visit the following link to get your 7 days free trial account: https://www.optimus-prep.com/gmat-on-demand-course
avatar
monunahata00
Joined: 08 Jun 2017
Last visit: 26 Jan 2018
Posts: 2
Own Kudos:
Given Kudos: 21
Posts: 2
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The point (–4, 4) is on the line y = –x, so it is equidistant from any point and that point’s reflection over the line y = –x. The reflection of (2, 3) over the line y = –x is (–3, –2). Since (–3, –2) is the same distance from (–4, 4) as is (2, 3), it must also be on the circle. Answer = D.
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,293
Own Kudos:
36,951
 [1]
Given Kudos: 9,464
Products:
Expert
Expert reply
Posts: 5,293
Kudos: 36,951
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
A circle has a center at P = (–4, 4) and passes through the point (2, 3). Through which of the following must the circle also pass?

A. (1, 1)
B. (1, 7)
C. (–1, 9)
D. (–3, –2)
E. (–9, 1)

Kudos for a correct solution.
I didn't catch shortcut y = -x, which IS elegant. I'm not a fan of the distance formula.

Start with general formula for a circle:

\((x - h)^2 + (y - k)^2 = r^2\). Plug in center coordinates:

\((x + 4)^2 + (y - 4)^2 = r^2\). Any point through which the circle passes will give you the radius squared. Plug in given point (2,3)

\((2 + 4)^2 + (3 - 4)^2 = r^2\)
\(6^2 + (-1)^2 = r^2\)
\(36 + 1 = 37 = r^2\)

Don't solve for \(r\) in this problem with this method. You don't need it.

In the answer choices, we need x and y coordinates, that, when plugged into the equation, sum to 37 (satisfy the equation). The circle will pass through that point.

Scanning answer choices, because equation contains +4 and -4 and squares, look for values similar to (2,3) and test them [Answer D's (-3,-2)]. Or do the math for each choice, which is quick when using the circle equation.

A. (1,1): \(5^2 + (-3)^2 = 34\) NO

B. (1,7): \((-3)^2 + 4^2 = 25\) NO

C. (–1, 9): \((-3)^2 + 5^2 = 34\) NO

D. (–3, –2): \((-1)^2 + (-6)^2 = 37\) YES

E. (–9, 1): \((-5)^2 + (-3)^2 = 34\) NO

Answer D
avatar
Psk13
Joined: 23 Jul 2016
Last visit: 15 Nov 2021
Posts: 21
Own Kudos:
Given Kudos: 176
Posts: 21
Kudos: 7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Bunuel
A circle has a center at P = (–4, 4) and passes through the point (2, 3). Through which of the following must the circle also pass?

A. (1, 1)
B. (1, 7)
C. (–1, 9)
D. (–3, –2)
E. (–9, 1)


Kudos for a correct solution.

MAGOOSH OFFICIAL SOLUTION:

For this problem, there’s a long tedious way to slog through the problem, and there’s a slick elegant method that gets to the answer in a lightning fast manner.
The long slogging approach — first, calculate the distance from (–4, 4) to (2, 3). As it happens, that distance, the radius, equals \(\sqrt{37}\) . Then, we have to calculate the distance from (–4, 4) to each of the five answer choices, and find which one has also has a distance of \(\sqrt{37}\) —- all without a calculator. :(

The slick elegant approach is as follows. The point (–4, 4) is on the line y = –x, so it is equidistant from any point and that point’s reflection over the line y = –x. The reflection of (2, 3) over the line y = –x is (–3, –2). Since (–3, –2) is the same distance from (–4, 4) as is (2, 3), it must also be on the circle.

Answer = D.


Bunuel
can you explain slick elegant approach in detail
i am not able to understand why the point reflection is equidistant ?
also please explain the line y= -x
avatar
Psk13
Joined: 23 Jul 2016
Last visit: 15 Nov 2021
Posts: 21
Own Kudos:
7
 [1]
Given Kudos: 176
Posts: 21
Kudos: 7
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
:cry: no one is replying
m getting scared of coordinate geometry now
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,293
Own Kudos:
36,951
 [1]
Given Kudos: 9,464
Products:
Expert
Expert reply
Posts: 5,293
Kudos: 36,951
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Psk13
:cry: no one is replying
m getting scared of coordinate geometry now
Psk13 , if you only ask Bunuel , rest assured that I will never answer. :-) There are legends around here. He is one of them.

Now, if you add, "or anyone," or name a bunch of the other terrific experts, also legendary, you're likely to get an answer. (And if you don't, ask again, exactly as you did.)

Here is a whole post on the elegance of y = x. This very problem is discussed by a GMATclub expert, mikemcgarry:See here, on y = x

And here is Bunuel on coordinate geometry

Hope that helps.
User avatar
gps5441
Joined: 04 May 2014
Last visit: 03 Feb 2018
Posts: 109
Own Kudos:
Given Kudos: 126
Location: India
WE:Sales (Mutual Funds and Brokerage)
Posts: 109
Kudos: 77
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Psk13
:cry: no one is replying
m getting scared of coordinate geometry now

The coordinates given are (-4,4). Here x=-4 and y=4 or y=-x
User avatar
dave13
Joined: 09 Mar 2016
Last visit: 23 Nov 2024
Posts: 1,114
Own Kudos:
Given Kudos: 3,851
Posts: 1,114
Kudos: 1,088
Kudos
Add Kudos
Bookmarks
Bookmark this Post
generis
Bunuel
A circle has a center at P = (–4, 4) and passes through the point (2, 3). Through which of the following must the circle also pass?

A. (1, 1)
B. (1, 7)
C. (–1, 9)
D. (–3, –2)
E. (–9, 1)

Kudos for a correct solution.
I didn't catch shortcut y = -x, which IS elegant. I'm not a fan of the distance formula.

Start with general formula for a circle:

\((x - h)^2 + (y - k)^2 = r^2\). Plug in center coordinates:

\((x + 4)^2 + (y - 4)^2 = r^2\). Any point through which the circle passes will give you the radius squared. Plug in given point (2,3)

\((2 + 4)^2 + (3 - 4)^2 = r^2\)
\(6^2 + (-1)^2 = r^2\)
\(36 + 1 = 37 = r^2\)

Don't solve for \(r\) in this problem with this method. You don't need it.

In the answer choices, we need x and y coordinates, that, when plugged into the equation, sum to 37 (satisfy the equation). The circle will pass through that point.

Scanning answer choices, because equation contains +4 and -4 and squares, look for values similar to (2,3) and test them [Answer D's (-3,-2)]. Or do the math for each choice, which is quick when using the circle equation.

A. (1,1): \(5^2 + (-3)^2 = 34\) NO

B. (1,7): \((-3)^2 + 4^2 = 25\) NO

C. (–1, 9): \((-3)^2 + 5^2 = 34\) NO

D. (–3, –2): \((-1)^2 + (-6)^2 = 37\) YES

E. (–9, 1): \((-5)^2 + (-3)^2 = 34\) NO

Answer D

Hi generis :)

i understand how you got 37, (37 is what ? :? ) distance ? distance between which points :?

i dont understand where from did you get various values that you plgged in answe6 choices, see below in RED


A. (1,1): \(5^2 + (-3)^2 = 34\) NO

B. (1,7): \((-3)^2 + 4^2 = 25\) NO

C. (–1, 9): \((-3)^2 + 5^2 = 34\) NO

D. (–3, –2): \((-1)^2 + (-6)^2 = 37\) YES

E. (–9, 1): \((-5)^2 + (-3)^2 = 34\) NO



Also which formula are you using when testing answer choices ? :?

i know this formula

\((x−a)^2\)+\((y−b)^2\) =\(r^2\)

By the way did you try to draw this "A circle has a center at P = (–4, 4) and passes through the point (2, 3)." i drew and it doesnt look lik circle with these :? if center is P = (–4, 4) circle cant pass through (2, 3) , if circle wants to stay a circle and some distorted shape of circle :)
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,293
Own Kudos:
36,951
 [1]
Given Kudos: 9,464
Products:
Expert
Expert reply
Posts: 5,293
Kudos: 36,951
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dave13
generis
Bunuel
A circle has a center at P = (–4, 4) and passes through the point (2, 3). Through which of the following must the circle also pass?

A. (1, 1)
B. (1, 7)
C. (–1, 9)
D. (–3, –2)
E. (–9, 1)
Hi generis :)

i understand how you got 37, (37 is what ? :? ) distance ? distance between which points :?

i dont understand where from did you get various values that you plgged in answe6 choices, see below in RED

A. (1,1): \(5^2 + (-3)^2 = 34\) NO

B. (1,7): \((-3)^2 + 4^2 = 25\) NO

C. (–1, 9): \((-3)^2 + 5^2 = 34\) NO

D. (–3, –2): \((-1)^2 + (-6)^2 = 37\) YES

E. (–9, 1): \((-5)^2 + (-3)^2 = 34\) NO

Also which formula are you using when testing answer choices ? :?

i know this formula

\((x−a)^2\)+\((y−b)^2\) =\(r^2\)

By the way did you try to draw this "A circle has a center at P = (–4, 4) and passes through the point (2, 3)." i drew and it doesnt look lik circle with these :? if center is P = (–4, 4) circle cant pass through (2, 3) , if circle wants to stay a circle and some distorted shape of circle :)
@dave13 : (37 is what ? :? ) distance ? distance between which points :?
37 is the length of the radius, squared.
The radius is the distance between the center of a circle and any point that lies on the circle.
(The length of the radius is \(\sqrt{37}\))

where from did you get various values that you plugged in answer choices?
I wrote the equation for THIS circle first (from the "standard" formula you know).
Then I found the radius using the given point (2,3).
(Try plugging that point into the equation for THIS circle in blue, directly below.)

The equation for THIS circle is \((x + 4)^2 + (y - 4)^2 = r^2\)
Then, in the answers, values I "plugged in" were x- and y-coordinates for the points in the answers.
I just did not show all the steps. I show full steps below for Answers D and A.

You say you know this formula: \((x−a)^2\)+\((y−b)^2\) =\(r^2\)
Excellent. Standard Equation of a circle,* which is used for circles whose centers are NOT at (0,0)
The center is (a,b). The radius is r. (I used the same equation with (h, k).)
That is the formula I used to test the answers.
But you have to modify the Standard Formula to fit this particular circle.

\((x−a)^2\)+\((y−b)^2\) =\(r^2\)
You need a center (given), to find the equation for this particular circle.
You need one point on the circle (given) to find the length of the radius, squared.

Find equation for THIS circle. Plug the center's coordinates (-4,4) into standard circle equation:
\((x - (-4))^2 + (y - 4)^2 = r^2\)
\((x + 4)^2 + (y - 4)^2 = r^2\) - equation for THIS circle

Find the radius.
Any point that lies on the circle will satisfy this equation (will make the equation true).
That point's coordinates will yield the length of the radius, squared.
It is given that (2,3) lies on the circle. Plug in point (2,3):
\((2 + 4)^2 + (3 - 4)^2 = r^2\)
\((6)^2 + (-1)^2 = r^2\)
\(36 + 1 = 37 = r^2\) OR
\(r = \sqrt{37}\)

The way I solved this problem, you can and should keep the radius's length squared. Why?
Because any other point that lies on the circle has to satisfy the equation, and --
we're squaring everything! The equation gives us \(r^2\).
Why make more work?

To find whether a point is on the circle, I have to plug (x,y) into the equation we found above:
\((x + 4)^2 + (y - 4)^2 = r^2\)
Any point on the circle, when I plug its coordinates into the equation, will yield \(37 = r^2\)

Let's take the other point on the circle, Answer D: (-3, -2). Plug in its coordinates.
The result MUST be \(37 = r^2\)
\((x + 4)^2 + (y - 4)^2 = r^2\)
\((-3 + 4)^2 + (-2 - 4)^2 = r^2\)
\((-1)^2 + (-6)^2 = r^2\)
\(1 + 36 = 37 = r^2\) BINGO
If you want to take the extra step, \(\sqrt{r^2}\), that is fine.

(That step is often used in the distance formula. I'm not a fan of the distance formula.)

Do any of the OTHER answers work? (NO.)
\((x + 4)^2 + (y - 4)^2 = r^2\). Plug in x and y. Result must be 37

• Answer A) point (1,1)?

\((1 + 4)^2 + (1 - 4)^2 = r^2\)
\((5)^2 + (-3)^2 = r^2\)
\(25 + 9 = r^2\)
\(25 + 9 = 34 = r^2\)
\(r^2\) should equal 37. Here, \(r^2\) equals 34.

NO, this point does not lie on the circle.
WRONG RADIUS LENGTH
Length of radius for this point? \(r = \sqrt{34}\)
True length of radius for the circle? \(r = \sqrt{37}\)

Try the other answers. Plug the x- and y-coordinates into the equation.
Do they result in \(r^2 = 37\) or (longer way) \(r = \sqrt{37}\)?

Quote:
By the way did you try to draw this "A circle has a center at P = (–4, 4) and passes through the point (2, 3)." i drew and it doesnt look lik circle with these :? if center is P = (–4, 4) circle cant pass through (2, 3) , if circle wants to stay a circle and some distorted shape of circle
Yes, I did, for this answer.
The circle you describe -- which is indeed a circle -- is attached. :-D
Attachment:
circequation.png
circequation.png [ 49.21 KiB | Viewed 10693 times ]
Hope that helps :-)

*In the equation, the radius is the hypotenuse of a right-angled triangle.
Length of Leg1 of that right triangle: (x - a)
Length of Leg 2 of that right triangle: (y - b)
\(Leg1^2 + Leg2^2 = Radius^2\)
The equation for a circle works because x and y create a right triangle with one vertex at the center of the circle.
The equation is a result of the Pythagorean theorem.
User avatar
dave13
Joined: 09 Mar 2016
Last visit: 23 Nov 2024
Posts: 1,114
Own Kudos:
Given Kudos: 3,851
Posts: 1,114
Kudos: 1,088
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Many thanks generis for unique explanation :) one question why did you reduce the font size of the important part of explanation :? :)
its like in contract where the font size is very small of the most important part of contract :)
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,293
Own Kudos:
36,951
 [1]
Given Kudos: 9,464
Products:
Expert
Expert reply
Posts: 5,293
Kudos: 36,951
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dave13
Many thanks generis for unique explanation :) one question why did you reduce the font size of the important part of explanation :? :)
its like in contract where the font size is very small of the most important part of contract :)
:lol: :lol: Agreed about contracts: read the fine print.

I put that which you deem the "most important" part of the explanation in small font because I wasn't sure whether it was the most important part.
It's hard to know how much people do not know.
You said you knew the Standard Formula for a circle.
Whether you knew its basis was unclear.
I dropped a footnote to address the uncertainty and to keep the post as short as I could.

Hint: if you know a formula but do not know why it works or exists, research it. :geek: :-)
User avatar
US09
Joined: 15 Oct 2017
Last visit: 06 Apr 2021
Posts: 248
Own Kudos:
Given Kudos: 338
GMAT 1: 560 Q42 V25
GMAT 2: 570 Q43 V27
GMAT 3: 710 Q49 V39
Products:
GMAT 3: 710 Q49 V39
Posts: 248
Kudos: 286
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Radius is 6. Hence for y coordinates, the circle will pass through 4-6=-2 & 4+6=10. Since we have an option with -2 as one of the choices, it certainly is D. Though, there can very well be multiple other y coordinates but -2 will always be true as one of the y coordinates.
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 16 Jul 2025
Posts: 21,130
Own Kudos:
26,185
 [2]
Given Kudos: 296
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,130
Kudos: 26,185
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
A circle has a center at P = (–4, 4) and passes through the point (2, 3). Through which of the following must the circle also pass?

A. (1, 1)
B. (1, 7)
C. (–1, 9)
D. (–3, –2)
E. (–9, 1)


Kudos for a correct solution.

If (x, y) is also a point on the circle, then the distance between (x, y) and the center of the circle, (-4, 4), is equal to the distance between (2, 3) and (-4, 4). Therefore, we can create an equation using the distance formula for both sides of the equation as follows:

√[(x - (-4))^2 + (y - 4)^2] = √[(2 - (-4))^2 + (3 - 4)^2]

√[(x + 4)^2 + (y - 4)^2] = √[6^2 + (-1)^2]

(x + 4)^2 + (y - 4)^2 = 37

We see that 37 is an odd number, so one of the squares on the left hand side has to be odd and the other is even. That means one of x and y has to be odd and the other has to be even. From the given answer choices, we see that only choice D satisfies this criterion. Therefore, D is the correct answer.

Answer: D
User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 16 Jul 2025
Posts: 5,703
Own Kudos:
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,703
Kudos: 5,228
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Given: A circle has a center at P = (–4, 4) and passes through the point (2, 3).
Asked: Through which of the following must the circle also pass?

Center (-4,4)
Radius = Distance of point (2,3) from center (-4,4) = \(\sqrt{(2+4)^2 + (3-4)^2} = \sqrt{37}\)

A. (1, 1) : Distance from center = \(\sqrt{(1+4)^2 + (1-4)^2} = \sqrt{34}\)
B. (1, 7) : Distance from center = \(\sqrt{(1+4)^2 + (7-4)^2} = \sqrt{34}\)
C. (–1, 9) : Distance from center = \(\sqrt{(-1+4)^2 + (9-4)^2} = \sqrt{34}\)
D. (–3, –2) : Distance from center = \(\sqrt{(-3+4)^2 + (-2-4)^2} = \sqrt{37}\)
E. (–9, 1) : Distance from center = \(\sqrt{(-9+4)^2 + (1-4)^2} = \sqrt{34}\)

Since point (-3,-2) has the same distance from the center (-4,4), the circle will pass through it.

IMO D
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,434
Own Kudos:
Posts: 37,434
Kudos: 1,013
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
102601 posts
PS Forum Moderator
697 posts