Last visit was: 21 Jul 2024, 21:38 It is currently 21 Jul 2024, 21:38
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Date
Tags:
Show Tags
Hide Tags
User avatar
Retired Moderator
Joined: 04 Oct 2009
Status:2000 posts! I don't know whether I should feel great or sad about it! LOL
Posts: 764
Own Kudos [?]: 4031 [103]
Given Kudos: 109
Location: Peru
Concentration: Finance, SMEs, Developing countries, Public sector and non profit organizations
Schools:Harvard, Stanford, Wharton, MIT & HKS (Government)
GPA: 4.0
WE 1: Economic research
WE 2: Banking
WE 3: Government: Foreign Trade and SMEs
Send PM
Most Helpful Reply
Tutor
Joined: 16 Oct 2010
Posts: 15126
Own Kudos [?]: 66769 [31]
Given Kudos: 436
Location: Pune, India
Send PM
Math Expert
Joined: 02 Sep 2009
Posts: 94441
Own Kudos [?]: 642841 [13]
Given Kudos: 86716
Send PM
General Discussion
User avatar
Retired Moderator
Joined: 04 Oct 2009
Status:2000 posts! I don't know whether I should feel great or sad about it! LOL
Posts: 764
Own Kudos [?]: 4031 [0]
Given Kudos: 109
Location: Peru
Concentration: Finance, SMEs, Developing countries, Public sector and non profit organizations
Schools:Harvard, Stanford, Wharton, MIT & HKS (Government)
GPA: 4.0
WE 1: Economic research
WE 2: Banking
WE 3: Government: Foreign Trade and SMEs
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
Bunuel wrote:

This question has much simpler solution than MGMAT offered:

Donald to receiver either Prograine or Ropecia must be among first two chosen patients and as there are 14 patients then the probability of this is simply 2/14=1/7.


Thank you Bunuel!
But what do you think about my approach?, am I going in the right path?
Thanks!
Math Expert
Joined: 02 Sep 2009
Posts: 94441
Own Kudos [?]: 642841 [2]
Given Kudos: 86716
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
1
Kudos
1
Bookmarks
Expert Reply
metallicafan wrote:
Bunuel wrote:

This question has much simpler solution than MGMAT offered:

Donald to receiver either Prograine or Ropecia must be among first two chosen patients and as there are 14 patients then the probability of this is simply 2/14=1/7.


Thank you Bunuel!
But what do you think about my approach?, am I going in the right path?
Thanks!


Yes, you can use P(A)+P(B)-P(A and B) here: 1/14+13/14*1/13-0, as P(both)=0. But again this is a long way.
avatar
Intern
Intern
Joined: 25 Jul 2012
Posts: 1
Own Kudos [?]: 1 [1]
Given Kudos: 0
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
1
Kudos
Hello.. first post ever!

To dovetail off metallicafan's question, can you please explain how you know that the order does not matter? How can you make this assumption when the question specifically states, "event X, THEN event Y"


Thanks
User avatar
Intern
Intern
Joined: 06 Apr 2012
Posts: 27
Own Kudos [?]: 133 [0]
Given Kudos: 48
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
metallicafan wrote:
A medical researcher must choose one of 14 patients to receive an experimental medicine called Progaine. The researcher must then choose one of the remaining 13 patients to receive another medicine, called Ropecia. Finally, the researcher administers a placebo to one of the remaining 12 patients. All choices are equally random. If Donald is one of the 14 patients, what is the probability that Donald receives either Progaine or Ropecia?

MGMAT's approach:

"Since Progaine is only administered to one patient, each patient (including Donald) must have probability 1/14 of receiving it. The same logic also holds for Ropecia. Since Donald cannot receive both of the medicines, the desired probability is the probability of receiving Progaine, plus the probability of receiving Ropecia:
\(\frac{1}{14} + \frac{1}{14} = \frac{1}{7}\)

My approach:

Probability of receiving Progaine:
\(\frac{1}{14} * \frac{13}{13} = \frac{1}{14}\)
Probability of receiving Ropecia, which is:
(Probabilty of NOT receiving Progaine) * (Probability of receiving Ropecia among the rest):
13/14 * 1/13 = 1/14
Therefore, the answer to question is: \(\frac{1}{14} + \frac{1}{14} = \frac{1}{7}\)

Is my approach correct?, Why doesn't MGMAT consider the order in the administration of the drugs?
When the researcher provides Ropecia, he or she has to choose among 13 people, NOT 14. It seems they are using the P(A) + P(B) - P(A and B) formula. Please your comments.


I am going over this question right now and I saw the solutions and I really appreciate the input guys. Bunuel my question is similar and what really throws me off is the phrase "The same logic also holds for Ropecia" - 1) Do you think MGMAT just used a shortcut there to say that P(Ropecia) = 13/14 * 1/13 = 1/14 or how else do you get 1/14 for P(Ropecia)? The way I translate "The same logic also holds for Ropecia" is certainly not P(Ropecia) = 1/14 for the reason described above...please let me know if the explanation MGMAT provides sounds clear to you and perhaps what you would take out from such explanation.

2) As for your solution, if we change to the question to "what is the P(Progaine, or Ropecia, or Placebo)?" the solution would not be 3/14 or would it?

P.S. Just another thought, I agree that your method is much shorter (and intuitive as well) but for those who do not have a solid grasp of seemingly more convoluted prob/comb problems such as one above (and as such, they may be viewed as those who lack "common sense" :wink: ) it is important to see all of the steps...so in this regard it is good that metallicafan clarified one way we get P(Ropecia) and fits nicely with overall thinking about probability.
User avatar
Manager
Manager
Joined: 11 Aug 2012
Posts: 103
Own Kudos [?]: 335 [1]
Given Kudos: 16
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
1
Kudos
Bunuel, I don't understand the approach of the MGMAT guys.
In the case of Ropecia, why the probability is 1/14? I think it should be 1/13 because when we give Ropecia there are only 13 patients, not 14. Remember that Ropecia is given after Progaine.

Thanks!
avatar
Intern
Intern
Joined: 07 Mar 2013
Posts: 22
Own Kudos [?]: 30 [0]
Given Kudos: 80
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
A medical researcher must choose one of 14 patients to receive an experimental
medicine called Progaine. The researcher must then choose one of
the remaining 13 patients to receive another medicine, called Ropecia.
Finally, the researcher administers a placebo to one of the remaining 12
patients. All choices are equally random. If Donald is one of the 14 patients,
what is the probability that Donald receives either Progaine or Ropecia?

What should be the methodology to tackle these questions ?
Math Expert
Joined: 02 Sep 2009
Posts: 94441
Own Kudos [?]: 642841 [3]
Given Kudos: 86716
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
3
Bookmarks
Expert Reply
vishalrastogi wrote:
A medical researcher must choose one of 14 patients to receive an experimental
medicine called Progaine. The researcher must then choose one of
the remaining 13 patients to receive another medicine, called Ropecia.
Finally, the researcher administers a placebo to one of the remaining 12
patients. All choices are equally random. If Donald is one of the 14 patients,
what is the probability that Donald receives either Progaine or Ropecia?

What should be the methodology to tackle these questions ?


Merging similar topics. Please refer to the solutions above.

Similar questions to practice:
a-box-contains-3-yellow-balls-and-5-black-balls-one-by-one-90272.html
a-bag-contains-3-white-balls-3-black-balls-2-red-balls-100023.html
each-of-four-different-locks-has-a-matching-key-the-keys-101553.html
if-40-people-get-the-chance-to-pick-a-card-from-a-canister-97015.html
new-set-of-mixed-questions-150204-100.html#p1208473
a-bag-contains-3-white-balls-3-black-balls-2-red-balls-100023.html

Hope this helps.
Director
Director
Joined: 17 Dec 2012
Posts: 586
Own Kudos [?]: 1569 [7]
Given Kudos: 20
Location: India
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
6
Kudos
1
Bookmarks
Expert Reply
1. The only way Donald could have got Progaine is when he is the first patient chosen. The probability of this happening is 1/14
2. The only way Donald could have got Ropecia is being the second patient chosen. For this we know he should not have been the first patient. So the probability is 1/13 * 13/14= 1/14 where 13/14 is the probability of not being chosen the first patient.
3. The probability of being given Progaine or Ropecia is the sum of the two= 1/14 + 1/14= 1/7
Director
Director
Joined: 17 Dec 2012
Posts: 586
Own Kudos [?]: 1569 [1]
Given Kudos: 20
Location: India
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
1
Kudos
Expert Reply
danzig wrote:
Bunuel, I don't understand the approach of the MGMAT guys.
In the case of Ropecia, why the probability is 1/14? I think it should be 1/13 because when we give Ropecia there are only 13 patients, not 14. Remember that Ropecia is given after Progaine.

Thanks!


Hi,

It would seem that since the second patient is chosen from only among the 13 patients, the probability of being given Ropecia is 1/13 but remember the second patient is chosen after the first patient. The actual second patient chosen could really have been the first patient chosen or he could not have been the first patient chosen. The former has a probability 1/14 and the latter 13/14. We are considering only the second case that the second patient is chosen from the remaining patients after the first patient is chosen. So instead of 1/13 * ( 1/14 + 13/14) = 1/13, we have 1/13 * (13/14)= 1/14.

To elaborate, if he is chosen as the first patient he would not have been given Ropecia at all. So that affects the probability of being given Ropecia and hence would not be 1/13.
Manager
Manager
Joined: 19 Oct 2016
Posts: 54
Own Kudos [?]: 64 [0]
Given Kudos: 29
Location: India
Concentration: Marketing, Leadership
Schools: IIMA (I)
GMAT 1: 580 Q46 V24
GMAT 2: 540 Q39 V25
GMAT 3: 660 Q48 V34
GPA: 3.15
WE:Psychology and Counseling (Health Care)
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
bumpbot wrote:
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.


What's up bumpbot

Want to know how I solved it?

Since it's an or question you addd subtract the chances of both happening... so
(1/14) + (1/13) - (1/14 * 1/13) =

(27/182) - (1/182)=

26/182 = 13/91 = 1/7
Intern
Intern
Joined: 04 Feb 2023
Posts: 9
Own Kudos [?]: 10 [0]
Given Kudos: 22
Location: India
Concentration: Human Resources, General Management
GMAT 1: 680 Q48 V35
GPA: 4
WE:Human Resources (Human Resources)
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
I used dashes approach _* _ * _
First dash occupied by D, so rest will be 13*12 [1*13*12]
Second is occupied by D, so first and last will be 13*12 [13*1*12]

Then divided this by 14*13*12

(13*12 + 13*12)/14*13*12 = 1/7
Senior Manager
Senior Manager
Joined: 21 Nov 2021
Posts: 474
Own Kudos [?]: 240 [1]
Given Kudos: 381
Send PM
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
1
Kudos
🤷

12 people get a placebo, the others get something.

Odds of getting placebo:

12/14 = 6/7

Odds of not getting placebo:

1 - 6/7 = 1/7

Posted from my mobile device
GMAT Club Bot
Re: A medical researcher must choose one of 14 patients to receive an expe [#permalink]
Moderator:
Math Expert
94441 posts