Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 64070

Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
27 Mar 2020, 01:08
Question Stats:
53% (03:09) correct 47% (02:59) wrong based on 50 sessions
HideShow timer Statistics
Competition Mode Question Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40 cent stamps. She spent a total of $4.20 in buying these stamps. Did she buy more than 5 stamps of any of the three values? (1) The number of 35 cent stamps and 40 cent stamps that Alice bought are equal. (2) The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought. Are You Up For the Challenge: 700 Level Questions
Official Answer and Stats are available only to registered users. Register/ Login.
_________________



GMATWhiz Representative
Joined: 07 May 2019
Posts: 693
Location: India

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
Updated on: 27 Mar 2020, 06:56
Solution Step 1: Analyse Question Stem
• Let x, y, and z be the number of stamps of 30cent, 35 cents, and 40 cents, respectively • Alice spent a total of $4.20 = 420 cents
o \(30*x + 35*y + 40*z = 420\) o \(6x + 7y + 8z = 84\)…(i) We need to find, whether any of x, y, and z is greater than 5 or not. Step 2: Analyse Statements Independently (And eliminate options) – AD/BCE Statement 1: The number of 35 cent stamps and 40 cent stamps are equal. On substitute y = z in equation (i), we get • \(6x + 7y + 8y = 84\)
o \(6x + 15y = 84\) o \(2x + 5y = 28\) • We know that x and y are integers. [Stamps cannot be in fraction.]
o There are 2 possibilities
• \(2*4 + 5*4 = 8+20 =28\) • In this case none of x, y, and z are greater than 5
Case 2: x = 9 and y =2
• \(2*9 + 5*2 = 18 + 10 = 28\) • In this case x is greater than 5.
We are getting contradicting results, Hence, statement 1 is not sufficient, we can eliminate answer options A and D. Statement 2: The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps is not more than the number of 40 cent stamps she bought. • \(x = y\), and z is not greater than y. On substituting x = y in equation (i), we get • \(6y + 7y + 8z = 84\)
o \(13y + 8z = 84\) o \(z = \frac{(8413y)}{8}\) [this must be a nonnegative integer; z can never be in fraction] • There is only one possibility.
o \(y = 4\), then \(z =\frac{(84  52)}{8} = 4\) o \(x = y = z = 4\) o In this case none of x, y, and z are greater than 5. and this is the only possible case Hence, the correct answer is Option B.
_________________
Originally posted by GMATWhizTeam on 27 Mar 2020, 02:38.
Last edited by GMATWhizTeam on 27 Mar 2020, 06:56, edited 2 times in total.



Intern
Joined: 26 Mar 2020
Posts: 7

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
27 Mar 2020, 03:07
Statement 1 alone is insufficient but statement 2 alone describes that she cannot buy any of the stamps more that 5.
Posted from my mobile device



SVP
Joined: 20 Jul 2017
Posts: 1506
Location: India
Concentration: Entrepreneurship, Marketing
WE: Education (Education)

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
27 Mar 2020, 03:27
Let the number of stamps of 30 cent, 35 cent and 40 cent be a, b & c respectively Given, 30a + 35b + 40c = 420 > 6a + 7b + 8c = 84 ....... (1)
(1) The number of 35 cent stamps and 40 cent stamps that Alice bought are equal. > b = c From (1), > 6a + 15b = 84 > 2a + 5b = 28 > Possible values of (a, b, c) = {(4, 4, 4), (9, 2, 2)} > Insufficient
(2) The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought. > a = c and b ≤ c From (1), > 14a + 7b = 84 > 2a + b = 12 > Possible values of (a, b, c) = {(4, 4, 4), (5, 2, 5)} > None of the stamps are more than 5 > Sufficient
Option B



Director
Joined: 30 Sep 2017
Posts: 909
GMAT 1: 720 Q49 V40
GPA: 3.8

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
27 Mar 2020, 06:47
The number of 30 cent stamp = a The number of 35 cent stamp = b The number of 40 cent stamp = c > 30a +35b +40c = 420
(1) b=c If b=c=1, then a>5 (ok) If b=c=4, then a=4 <=5 (no) NOT SUFFICIENT
(2) a=c. b<= a or c If a=c=4, then b=4 (ok) If a=c=5, then b=2 (ok) If a=c=6, then b=0, BUT b must be at least 1.(ok) SUFFICIENT
FINAL ANSWER IS (B)
Posted from my mobile device



SVP
Joined: 24 Nov 2016
Posts: 1545
Location: United States

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
27 Mar 2020, 08:20
Quote: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40 cent stamps. She spent a total of $4.20 in buying these stamps. Did she buy more than 5 stamps of any of the three values?
(1) The number of 35 cent stamps and 40 cent stamps that Alice bought are equal.
(2) The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought. im assuming she bought at least 1 of each stamp; 30a+35b+40c=420 notice that b must be even because 35 is not divisible by 420 (1) insufic30a+35b+40c=420; b=c b=c=2: 4207080=270 a=270/30=9 b=c=4: 420140160=120 a=120/30=4 (2) sufic30a+35b+40c=420; b=c a=c=1: 4203040=350 b=350/35=10>a a=c=3: 42090120=210 b=210/35=6>a a=c=5: 420150200=70 b=70/35=2<a Ans (B)



Senior Manager
Status: Student
Joined: 14 Jul 2019
Posts: 320
Location: United States
Concentration: Accounting, Finance
GPA: 3.9
WE: Education (Accounting)

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
27 Mar 2020, 09:34
Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40 cent stamps. She spent a total of $4.20 in buying these stamps. Did she buy more than 5 stamps of any of the three values?
(1) The number of 35 cent stamps and 40 cent stamps that Alice bought are equal.
(2) The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought
1) 30 x + 35 y + 40 y =420 or, 30x + 75y = 420,or, 10x + 25y =140 , where x and y has to be positive integer . y can be 2, in that case x is 9. Again when y = 4, x is 5. Not sufficient.
2) 30x + 35y + 40x = 420 or, 70x +35y = 420, or 2x + y = 12, where y is equal or less than x. when x= 4, y =4. Again when x =5, y =2. x cannot be less than 3 as in that case y will be more than x.So, in both cases the number of stamps doesn't exceed 5. Sufficient.
B is the answer.



VP
Joined: 07 Mar 2019
Posts: 1161
Location: India
WE: Sales (Energy and Utilities)

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
27 Mar 2020, 11:13
Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40 cent stamps. She spent a total of $4.20 in buying these stamps. Did she buy more than 5 stamps of any of the three values? Let number of 30 cent stamps = x number of 35 cent stamps = y number of 40 cent stamps = z where a, y and z all are positive integers. So, 30x + 35y + 40z = 420 6x + 7y + 8z = 84 (1) The number of 35 cent stamps and 40 cent stamps that Alice bought are equal. y = z so 6x + 7y + 8z = 84 becomes 6x + 15z = 84 x = 4, z = 4 NOx = 9, z = 2 YESINSUFFICIENT. (2) The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought. x = z and y ≤ z Now 6x + 7y + 8z = 14x + 7y = 84 2x + y = 12 2*1 + 10 = 12 NO2*2 + 8 = 12 NO2*3 + 6 = 12 NO2*4 + 4 = 12 NO2*5 + 2 = 12 NO2*6 + 0 = 12 YESINSUFFICIENT. Together 1 and 2. x = y = z 6x + 7y + 8z = 21x = 84 x = 4 OR x = y = z = 4 NOOnly one case. SUFFICIENT. Answer C.
_________________
Ephemeral Epiphany..!
GMATPREP1 590(Q48,V23) March 6, 2019 GMATPREP2 610(Q44,V29) June 10, 2019 GMATPREPSoft1 680(Q48,V35) June 26, 2019



Manhattan Prep Instructor
Joined: 04 Dec 2015
Posts: 943
GMAT 1: 790 Q51 V49

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
27 Mar 2020, 15:37
Quote: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40 cent stamps. She spent a total of $4.20 in buying these stamps. Did she buy more than 5 stamps of any of the three values?
(1) The number of 35 cent stamps and 40 cent stamps that Alice bought are equal.
(2) The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought. Fun one! Let's say that x is the number of 30 cent stamps, y is the number of 35 cent stamps, and z is the number of 40 cent stamps. So, in the question stem, we have an equation: 30x + 35y + 40z = 420 (it's 420 and not 4.20 because we're using cents rather than dollars!) Divide everything by 10 to simplify the math: 3x + 3.5y + 4z = 42 The question is whether she bought more than 5 stamps of any of the three values. That is, is x, y, or z greater than 5? Also note that we know x, y, and z are nonnegative integers, since you can't buy a fractional or negative number of stamps. Statement 1: The number of 35 cent stamps and 40 cent stamps that Alice bought are equal. In other words, y = z. So, the equation simplifies as follows: 3x + 3.5y + 4z = 42 3x + 7.5y = 42 Okay, one of the values could be bigger than 5, for instance, if x = 14 and y = 0. So, it's possible to get a "yes" answer. Can we also get a "no," where both of the values are smaller than 5? Let's try the biggest values possible that are still smaller than 5. So, if y = 4, then we have this: 3x + 7.5(4) = 42 3x + 30 = 42 3x = 12 x = 4 Therefore, x = 4, y = 4, z = 4 is a valid solution that fits this statement, and gives us a "no" answer (none of the values are greater than 5.) Therefore, this statement is insufficient. Statement 2 The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought. This says that x = z, and y<=z. The second case we tested above fits the bill: x = y = z = 4. In this case, we get an answer of "no." Can we also get a "yes" to show that this is insufficient? To do that, we should simplify the equation: 3x + 3.5y + 4z = 42 3x + 3.5y + 4x = 42 7x + 3.5y = 42 I multiplied by 2 to get rid of the decimal: 14x + 7y = 84 Then, divide by 7: 2x + y = 12 The constraint from this statement is that y is no bigger than z. Since x and z are equal, we know that y can't be any bigger than x. Is there a solution that fits, where one of the values is greater than 5? x = 6 and y = 0 works (and that implies that z = 6 as well.) Therefore, this statement is also insufficient. Statements 1 + 2 togetherInterestingly, we already found a case that works with both statements and gives a "yes" answer: x = y = z = 4. Can we find a case that works with both statements and gives a "no" answer? Take the info from both statements: x = y, x = z. That is, all three values must be equal. Plug that into the equation: 3x + 3.5x + 4x = 42 10.5x = 42 21x = 84 x = 4 In other words, x = y = z = 4 is the only solution that still works. So, both statements together are sufficient and the correct answer is C.
_________________



Manager
Joined: 14 Jul 2017
Posts: 54

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
28 Mar 2020, 05:58
Ans C
Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40 cent stamps. She spent a total of $4.20 in buying these stamps. Did she buy more than 5 stamps of any of the three values?
(1) The number of 35 cent stamps and 40 cent stamps that Alice bought are equal.
(2) The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought.
Make basic equation ... and procedd evaluating choices ...
30a+35b+40c = 420
St1: you get (a,b,c) as (9,2,2) and (4,4,4) Insufficient St2: you get (a,b,c) as (6,0,6) , (5,2,5) and (4,4,4) .. Insufficient
Combining both only a=b=c satisfies ... Hence sufficent



Manager
Joined: 11 Mar 2018
Posts: 230

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
28 Mar 2020, 07:43
Bunuel wrote: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40 cent stamps. She spent a total of $4.20 in buying these stamps. Did she buy more than 5 stamps of any of the three values?
(1) The number of 35 cent stamps and 40 cent stamps that Alice bought are equal.
(2) The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought. Let stamps for 30 cents be 'a' Let stamps for 35 cents be 'b' Let stamps for 40 cents be 'c' Hence, according to stem  30a + 35b + 40c = 420 cents  (1)As per statement 1, b = c  (2)Using (1) and (2), we get 30a + 35b + 40b = 420 30a + 70b = 420 Now here we can have the following options  a = 4 and b = c = 4 ,OR a = 9 and b = c = 2 So in first case values are below 5 but in the second case value of a is above 5. Hence Statement 1 alone is InsufficientAs per statement 2, a = b  (3) ,and b < c  (4)Using (1) and (3), we get 30a + 35a + 40c = 420 65a + 40c = 420 Now here we can have the only the following case c = 4 and b = a = 4 which is sufficient to determine if alice bought more than 5 stamps of any of the three values Hence Statement 2 alone is SufficientHence B
_________________
Regards, AD  An admiration by anybody is an explanation understood by somebody !!! Happy GMATing... Go Nuts



Intern
Joined: 19 Nov 2019
Posts: 8

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
29 Mar 2020, 13:10
This seems to be a divisibility question.
We want to know if a, b, c are all <= 5 so this is a YES/NO DS question.
let a = # of 30 cent stamps, b = # 35 cent stamps, c = # of 40 cent stamps
so 30a + 35b + 40c = 420
1) # of 35 cent stamps is equal to # of 45 cent stamps. so b = c.
35+40 = 75. There are FIVE multiples of 75 that are less than or equal to 420 are 75, 150, 225, 300, 375.
now we can quickly see what values of a 30 cent stamp work with these combinations of the multiples of 75 we listed: 420  375 = 45, so c has to be less than 2 stamps (60 cents) so this is sufficient as our max possibility here is
b = c = 4 >300 a = 4 >120
all values are <5 so: SUFFICIENT
2) # of 30 cent stamps = # of 40 cent stamps, and # of 35 cent stamps is not more than # of 40 cent stamps so we have equations a = c and b <=c
we know a = c and so 30 + 40 = 70, there are 6 multiples of 70 less than or equal to 420: 70, 140, 210, 280, 350, 420
so we can have a = c = 6 here, while b = 0 which still satisfies b <= c so we get NO since a and c are > 5
but we can ALSO have a = c = 5 (total of 350), while b = 2 (value of 70) which adds to 420 so we get YES since all are <=5. INSUFFICIENT
So the answer is A



Director
Joined: 25 Jul 2018
Posts: 712

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
29 Mar 2020, 18:05
30x + 35y + 40z = 420 —> 6x + 7y + 8z = 84 x >5? y >5? z >5?
(Statement1): y = z If y= z = 2, then 6x = 84 —30 = 54 —> x= 9 (yes), y = z= 2 (No) Insufficient
(Statement2): x= z, y <= z. If x=z =6, then 14*6 + 7y = 84 —> y = 0(No), x=z=6 (Yes) Insufficient
Taken together 1&2, x =y = z —> 21*4 = 84 —> x= y = z = 4 (Always NO) Sufficient
Answer(C)
Posted from my mobile device



CR Forum Moderator
Joined: 18 May 2019
Posts: 811

Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
Show Tags
29 Mar 2020, 19:35
Let the number of 30cents stamps bought be \(a\), the number of 35cents stamps bought be \(b\), and the number 40cents stamps bought be \(c\).
Then \(30a + 35b + 40c = 420\) (1) Is \(a>5\), \(b>5\), or \(c>5\)?
Statement 1: The number of 35 cent stamps and 40 cent stamps that Alice bought are equal. This means that \(b = c\) Hence \(30a = 420  75b\) \(a = 14  5b/2\) when \(b=2\), \(a=9 \) Yes when \(b=4\), \(a = 4\) No Statement 1 is insufficient.
Statement 2: The number of 30 cent stamps and 40 cent stamps that Alice bought are equal. The number of 35 cent stamps that she bought was not more than the number of 40 cent stamps that she bought \(a = c\) and \(b ≤ c\) \(70a + 35b = 420\) \(2a + b = 12\) \(a = 6  b/2\) When \(b=2, a = 5,\) condition that \(b≤c\) satisfied. Yes When \(b=4, a = 4,\) condition that \(b≤c\) satisfied. No Statement 2 is insufficient.
1+2 \(a=b=c \)and naturally the condition that\( b≤c\) is satisfied. \(105a = 420\) \(a = 4.\) No. Both statements combined are sufficient.
The answer is C.




Re: Alice bought a certain number of 30 cent stamps, 35 cent stamps and 40
[#permalink]
29 Mar 2020, 19:35




