Last visit was: 18 Jul 2025, 17:05 It is currently 18 Jul 2025, 17:05
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
imhimanshu
Joined: 07 Sep 2010
Last visit: 08 Nov 2013
Posts: 221
Own Kudos:
5,913
 [232]
Given Kudos: 136
GMAT 1: 650 Q49 V30
Posts: 221
Kudos: 5,913
 [232]
27
Kudos
Add Kudos
205
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Jul 2025
Posts: 102,619
Own Kudos:
Given Kudos: 98,235
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,619
Kudos: 742,548
 [140]
67
Kudos
Add Kudos
72
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Jul 2025
Posts: 102,619
Own Kudos:
Given Kudos: 98,235
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,619
Kudos: 742,548
 [57]
52
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
User avatar
plaverbach
User avatar
Retired Moderator
Joined: 25 Mar 2014
Last visit: 28 Sep 2021
Posts: 218
Own Kudos:
534
 [31]
Given Kudos: 250
Status:Studying for the GMAT
Location: Brazil
Concentration: Technology, General Management
GMAT 1: 700 Q47 V40
GMAT 2: 740 Q49 V41 (Online)
WE:Business Development (Finance: Venture Capital)
Products:
GMAT 2: 740 Q49 V41 (Online)
Posts: 218
Kudos: 534
 [31]
22
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
Easy calculation:

1) Sum the UNIT digits.
1 + 4 + 9 + 16 + 25 +36+ 49+ 64 +81

2) Agrupate in 10's
1+9
4+6
6+4
9+1
5+ ___

The unit digit must be 5, therefore the correct answer is E.
General Discussion
User avatar
roygush
Joined: 01 Sep 2012
Last visit: 28 Jun 2015
Posts: 113
Own Kudos:
715
 [7]
Given Kudos: 19
7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks bunuel but how did you manage to understand that?
I read the question again and cannot imagine the picture you uploaded in my head at all.
Thanks! :)
avatar
violetsplash
Joined: 24 Jan 2012
Last visit: 28 Jan 2016
Posts: 8
Own Kudos:
1,073
 [2]
Given Kudos: 3
Posts: 8
Kudos: 1,073
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
roygush
Thanks bunuel but how did you manage to understand that?
I read the question again and cannot imagine the picture you uploaded in my head at all.
Thanks! :)

I read the stem carefully. We are told that:
Cubic boxes are stacked in square layers --> each layer is a square;
The bottom of the layer has 81 boxes --> the bottom layer has 9 rows and each row has 9 boxes.
Each layer has 1 fewer row and 1 fewer box in each remaining row than the layer directly below it --> the second layer has 8 rows and each row has 8 boxes.
...

Hope it helps.


I got confused (and I still am) by the line which says "Each layer has 1 fewer row and 1 fewer box in each remaining row than the layer directly below it"

I got that the bottom layer will have 9 x 9 boxes
I also understand that the next level up will have 8 rows of boxes and since this layer also has to form a square hence it needs 8 boxes in the column as well.

What is elusive for me is "and 1 fewer box in each remaining row[/color] than the layer directly below it". Can you please explain again.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Jul 2025
Posts: 102,619
Own Kudos:
742,548
 [8]
Given Kudos: 98,235
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,619
Kudos: 742,548
 [8]
8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
violetsplash
Bunuel
roygush
Thanks bunuel but how did you manage to understand that?
I read the question again and cannot imagine the picture you uploaded in my head at all.
Thanks! :)

I read the stem carefully. We are told that:
Cubic boxes are stacked in square layers --> each layer is a square;
The bottom of the layer has 81 boxes --> the bottom layer has 9 rows and each row has 9 boxes.
Each layer has 1 fewer row and 1 fewer box in each remaining row than the layer directly below it --> the second layer has 8 rows and each row has 8 boxes.
...

Hope it helps.


I got confused (and I still am) by the line which says "Each layer has 1 fewer row and 1 fewer box in each remaining row than the layer directly below it"

I got that the bottom layer will have 9 x 9 boxes
I also understand that the next level up will have 8 rows of boxes and since this layer also has to form a square hence it needs 8 boxes in the column as well.

What is elusive for me is "and 1 fewer box in each remaining row[/color] than the layer directly below it". Can you please explain again.

Each layer has 1 fewer row and 1 fewer box in each remaining row than the layer directly below it:

1st layer has 9 rows and 9 boxes in each of them. 2nd row has 1 fewer, so 8 rows and each of the remaining 8 rows has 1 fewer box, so 8 boxes in it.

Hope it's clear.
User avatar
HarveyS
Joined: 14 Jan 2013
Last visit: 25 Apr 2017
Posts: 112
Own Kudos:
Given Kudos: 30
Concentration: Strategy, Technology
GMAT Date: 08-01-2013
GPA: 3.7
WE:Consulting (Consulting)
Posts: 112
Kudos: 1,671
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel,

Do you have more examples like these questions? I am finding it difficult to understand after reading question.

Thanks

~M14
User avatar
NGGMAT
Joined: 20 Oct 2013
Last visit: 26 May 2014
Posts: 37
Own Kudos:
Given Kudos: 27
Posts: 37
Kudos: 9
Kudos
Add Kudos
Bookmarks
Bookmark this Post
superb explanation Bunnel! i couldnt understand the qs...
User avatar
geometric
Joined: 13 Jan 2012
Last visit: 15 Feb 2017
Posts: 244
Own Kudos:
Given Kudos: 38
Weight: 170lbs
GMAT 1: 740 Q48 V42
GMAT 2: 760 Q50 V42
WE:Analyst (Other)
GMAT 2: 760 Q50 V42
Posts: 244
Kudos: 856
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
imhimanshu
For a display, identical cubic boxes are stacked in square layers. Each layer consists of cubic boxes arranged in rows that form a square, and each layer has 1 fewer row and 1 fewer box in each remaining row than the layer directly below it. If the bottom of the layer has 81 boxes and the top of the layer has only 1 box, how many boxes are in display?

A. 236
B. 260
C. 269
D. 276
E. 285

Basically we have a 9-layer pyramid as shown below:
Attachment:
pyramid_with_corner_cube_from_istock.jpg
(Actually this pyramid 8-layer, couldn't find 9-layer one image)

The number of boxes would be: 9^2 + 8^2 + 7^2 + 6^2 + 5^2 + 4^2 + 3^2 + 2^2 + 1 = 285.

You can use the sum of the first n perfect squares formula to calculate: \(\frac{n(n+1)(2n+1)}{6}=\frac{9*(9+1)(2*9+1)}{6}=285\).

Answer: E.

Hope it's clear.

Is there any chance you can apply why that 6 is there? I want to make sure I can apply this formula in more complicated cases.
avatar
garsoltero
Joined: 26 Jul 2014
Last visit: 22 Jul 2020
Posts: 2
Own Kudos:
Given Kudos: 3
Posts: 2
Kudos: 3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Here's where non-native speakers could have trouble. By display I kept thinking of a computer display and I tried to visualize boxes arranged within the TV, and jumped into the conclusion that this was similar to a problem in the OG (13th Ed. PS 124).
Now, if you don't know the formula for the sum of the first n perfect squares (I actually forgot it on a second attempt), it is just nonsense to sum each square result. plaverbach's approach is the appropriate one. After taking a look at the answers and noticing that only two of them have the same units number, you pray that those are wrong and go ahead and find that unit.
User avatar
alice7
Joined: 12 Nov 2014
Last visit: 01 May 2017
Posts: 13
Own Kudos:
Given Kudos: 923
Posts: 13
Kudos: 44
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I liked plaverbach approach, as I couldn't understand the question in the first place and choose random wrong answer.
But when I saw the picture posted, I could use the plaverbach approach.
User avatar
devbond
Joined: 26 May 2014
Last visit: 25 May 2017
Posts: 29
Own Kudos:
Given Kudos: 17
Location: India
Concentration: General Management, Technology
WE:Information Technology (Computer Software)
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Attachment:
File comment: Visualize the Question this Way
IMG_20160830_012335.jpg
IMG_20160830_012335.jpg [ 1.04 MiB | Viewed 76778 times ]

In the above figures ,small circles are akin to cubic boxes and lines are rows. So bottom most layer has 9*9 = 81 boxes . Now this figure has more layers stacked on top of it and each layer has 1 less box(small circle) and 1 less row( line). If you follow this theory then you will notice that no of rows = no of boxes in each row.

So 2nd layer from the top will have 2 rows with 2 boxes each. Similarly top most layer will have 1 row and 1 box.

So the total no of boxes will be : 9* 9 + 8*8 +.....+ 1*1 = 285 .
avatar
MarcusHalberstram
Joined: 10 Aug 2016
Last visit: 29 Jun 2017
Posts: 5
Own Kudos:
9
 [9]
Given Kudos: 22
Posts: 5
Kudos: 9
 [9]
9
Kudos
Add Kudos
Bookmarks
Bookmark this Post
possibly the worst worded question i've ever read
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 18 Jul 2025
Posts: 11,294
Own Kudos:
41,824
 [1]
Given Kudos: 333
Status:Math and DI Expert
Products:
Expert
Expert reply
Posts: 11,294
Kudos: 41,824
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ashikaverma13
For a display, identical cubic boxes are stacked in square layers. Each layer consists of cubic boxes arranged in rows that form a square, and each layer has 1 fewer row and 1 fewer box in each remaining row than the layer directly below it. If the bottom layer has 21 boxes and the top layer has only 1 box, how many boxes are in the display?

A. 236
B. 260
C. 269
D. 276
E. 285

Hi,
The Q seems to be flawed as 21 cannot be the number of boxes . It is either 81 or 25.

You can imagine this as a huge cube from which steps are made in 2 sides by removing a row of boxes in each layer.
In numerical value,all the layers will be square of integers starting from 1 on top to 5 or 9 in lowermost.

When we add these, it becomes \(1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+9^2\)
Either add all of them or use formula
SUM=\(\frac{n(n+1)(2n+1)}{6}\)=9*(9+1)*(2*9+1)/6=9*10*19/6=15*19=285
E
User avatar
amathews
Joined: 07 Dec 2016
Last visit: 10 Oct 2017
Posts: 30
Own Kudos:
625
 [1]
Given Kudos: 29
Products:
Posts: 30
Kudos: 625
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I had a tough time understanding the question as well
User avatar
Nightmare007
Joined: 26 Aug 2016
Last visit: 05 Aug 2020
Posts: 438
Own Kudos:
428
 [1]
Given Kudos: 204
Location: India
Concentration: Operations, International Business
GMAT 1: 690 Q50 V33
GMAT 2: 700 Q50 V33
GMAT 3: 730 Q51 V38
GPA: 4
WE:Information Technology (Consulting)
Products:
GMAT 3: 730 Q51 V38
Posts: 438
Kudos: 428
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Yeah i thought from each square floor, one block is removed.
solved like-
9^2 -1 + 8^2 -1 + .... + 2^2 -1 + 1 ( since it is said from below floor one block is removed) .
And perplexed over where is the answer.
Now i understood what does it mean. It simply means a square box is missing from row in each subsequent floor.
avatar
swapnil611
Joined: 15 May 2017
Last visit: 08 Apr 2021
Posts: 8
Own Kudos:
Given Kudos: 170
Posts: 8
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
As we know the series is 9^2+8^2.....+2^2+1
we know there are 5 odd+4 even=odd hence striking off Answer choices A,B,and D now we can sum only the unit digits of the squares
1+4+9+6+5+6+9+4+1=X5 hence answer choice ending with 5 is the Answer

Answer :E
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,788
Own Kudos:
12,502
 [4]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,788
Kudos: 12,502
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Hi All,

The math behind this question is not difficult - it's just about adding the perfect squares from 1^2 to 9^2, inclusive. While it might take a little time to "visualize" what this question describes, the actual "work" is not too challenging. If a child can do the math, then you should be able to (and faster).

There is an interesting shortcut built into the math though. From the answer choices, you'll notice that almost all of the units digits are unique (6, 0, 9 and 5). This provides a likely shortcut that can help us to avoid a bit of the math.

1
4
9
16
25
36
49
64
81
---
?

The nine numbers above can be "paired up" to create 4 values that end in a 0:
1+ 9 --> ends in 0
4 + 16 --> ends in 0
36 + 64 --> ends in 0
49 + 81 --> ends in 0
and 25

The sum MUST end in a 5 and there's only one answer that matches…

Final Answer:
GMAT assassins aren't born, they're made,
Rich
User avatar
AweG
Joined: 05 Dec 2016
Last visit: 27 Jun 2018
Posts: 89
Own Kudos:
114
 [1]
Given Kudos: 184
Posts: 89
Kudos: 114
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

You can use the sum of the first n perfect squares formula to calculate: \(\frac{n(n+1)(2n+1)}{6}=\frac{9*(9+1)(2*9+1)}{6}=285\).

Answer: E.

Hope it's clear.

Attachment:
pyramid_with_corner_cube_from_istock.jpg

Or you can just multiply the units of the numbers and add them all together you will get a result of 5. The only answer ending in 5 is the correct one :)
 1   2   
Moderators:
Math Expert
102619 posts
PS Forum Moderator
698 posts