It is currently 22 Oct 2017, 19:56

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many digits are there in the product 2^23*5^24*7^3?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41912

Kudos [?]: 129370 [0], given: 12197

How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 03 Feb 2015, 09:53
Expert's post
5
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

60% (00:55) correct 40% (01:14) wrong based on 175 sessions

HideShow timer Statistics

Kudos [?]: 129370 [0], given: 12197

8 KUDOS received
Intern
Intern
User avatar
Joined: 19 Sep 2014
Posts: 22

Kudos [?]: 64 [8], given: 7

Concentration: Finance, Economics
GMAT Date: 05-05-2015
GMAT ToolKit User
Re: How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 03 Feb 2015, 11:41
8
This post received
KUDOS
1
This post was
BOOKMARKED
Bunuel wrote:
How many digits are there in the product 2^23*5^24*7^3?

A. 24
B. 25
C. 26
D. 27
E. 28


Kudos for a correct solution.


Seems like a tricky question, but I hope that I have been able to crack it! Here's my solution:

\((2^{23})*(5^{24})*(7^{3}) = (2^{23})*(5^{23})*(5)*(7)*(7)*(7)\)

\((2^{23})*(5^{23})*(5)*(7)*(7)*(7) = ((2*5)^{23})*(5)*(7)*(7)*(7)\)

\(((2*5)^{23})*(5)*(7)*(7)*(7) = (10^{23})*(35)*(49)\)...... From this step onwards it is probably possible to estimate the number of digits by approximating \((10^{23})*(35)*(49)\) to \((10^{23})*(35)*(50)\)!

But, just to make sure:

\((10^{23})*(35)*(49)\) = \((10^{23})*(35)*(50-1)\).... Therefore \((10^{23})*(1750 - 35)\) which is can be simplified to \((10^{23})*(1715)\)

\((10^{23})*(1715)\) should have exactly 27 digits!

I think the answer is D!

Please consider giving me KUDOS if you felt this post was helpful and correct! or please enlighten me (in case my answer's incorrect) so that I can learn and improve from my mistakes! Thanks. :)

Kudos [?]: 64 [8], given: 7

3 KUDOS received
Manager
Manager
avatar
Joined: 15 Aug 2013
Posts: 59

Kudos [?]: 24 [3], given: 7

Re: How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 03 Feb 2015, 18:00
3
This post received
KUDOS
Well, 2^23 * 5^24 8 7^3 can be simplified
5 * 7^3 * 10^23

Now either we can multiply 5 and 343 (7^3 = 343) and check or intuitively we can easily see that -
7^3 will be definitely greater than 200 (7*7 = 49 and we have one more 7 to multiply roughly would tak eus to 280+
if you dont remember 7^3 =343)...
what matter here is it will surely give me a -> 3 digit number <-
which when multiplied by 5 will give me no more than a 4 digit number. (we already saw that no is greater than 200 so definitely 4 digit number and not 3)

Hence we can say that on simplifiction we get (4 digit number) * 10^23
This will give me 4 digit number followed by 23 zeroes and hence no of digits will be 27
Ans- :D

Kudos [?]: 24 [3], given: 7

2 KUDOS received
Intern
Intern
avatar
Joined: 24 Jan 2014
Posts: 36

Kudos [?]: 28 [2], given: 73

Location: France
Concentration: General Management, International Business
GMAT 1: 700 Q47 V39
GPA: 3
WE: General Management (Advertising and PR)
GMAT ToolKit User Premium Member
Re: How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 03 Feb 2015, 22:40
2
This post received
KUDOS
Hi Bunuel,


We can simplify to: 2^23*5^23*5*7^3= (2*5)^23*5*343=10^23*1715

We can see a pattern in the powers of 10 =>
10^1 has 2 digits
10^2 has 3 digits
....
10^23 has 24 digits

IF we simplify 10^1*1715= 17150 =>1715 adds 3 digits to any number, power of 10 =>

(a number with 24 digits, from 10^23) * ( a number that adds 3 digits) = 27 digits

CORRECT RESPONSE D

Bunuel wrote:
How many digits are there in the product 2^23*5^24*7^3?

A. 24
B. 25
C. 26
D. 27
E. 28


Kudos for a correct solution.

_________________

THANKS = KUDOS. Kudos if my post helped you! :)

Napoleon Hill — 'Whatever the mind can conceive and believe, it can achieve.'

Kudos [?]: 28 [2], given: 73

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41912

Kudos [?]: 129370 [1], given: 12197

Re: How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 09 Feb 2015, 04:57
1
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
Bunuel wrote:
How many digits are there in the product 2^23*5^24*7^3?

A. 24
B. 25
C. 26
D. 27
E. 28


Kudos for a correct solution.


VERITAS PREP OFFICIAL SOLUTION:

The key to this problem is rearranging the math to play to your strengths. You should feel comfortable multiplying 2s by 5s to get 10s, so if you extract 2^23*5^23, you can visualize that number: 10^23, which is a 1 followed by 23 zeroes. Then you're left with 5^1*7^3, which you could either multiply out (not fun but not impossible, either) or again repackage to (5)(7) * (7)(7), which is 35 * 49. That is close enough to 35 * 50 that you can quickly see that that number will have 4 digits, so your final number will be those 4 digits followed by 23 zeroes for a total of 27 digits.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129370 [1], given: 12197

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 16552

Kudos [?]: 274 [0], given: 0

Premium Member
Re: How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 24 Jun 2016, 02:57
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 274 [0], given: 0

Intern
Intern
avatar
Joined: 25 May 2016
Posts: 39

Kudos [?]: 6 [0], given: 140

Location: Singapore
Concentration: Finance, General Management
GPA: 2.8
WE: Engineering (Computer Software)
Re: How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 24 Jun 2016, 02:58
kdatt1991 wrote:
Bunuel wrote:
How many digits are there in the product 2^23*5^24*7^3?

A. 24
B. 25
C. 26
D. 27
E. 28


Kudos for a correct solution.


Seems like a tricky question, but I hope that I have been able to crack it! Here's my solution:

\((2^{23})*(5^{24})*(7^{3}) = (2^{23})*(5^{23})*(5)*(7)*(7)*(7)\)

\((2^{23})*(5^{23})*(5)*(7)*(7)*(7) = ((2*5)^{23})*(5)*(7)*(7)*(7)\)

\(((2*5)^{23})*(5)*(7)*(7)*(7) = (10^{23})*(35)*(49)\)...... From this step onwards it is probably possible to estimate the number of digits by approximating \((10^{23})*(35)*(49)\) to \((10^{23})*(35)*(50)\)!

But, just to make sure:

\((10^{23})*(35)*(49)\) = \((10^{23})*(35)*(50-1)\).... Therefore \((10^{23})*(1750 - 35)\) which is can be simplified to \((10^{23})*(1715)\)

\((10^{23})*(1715)\) should have exactly 27 digits!

I think the answer is D!

Please consider giving me KUDOS if you felt this post was helpful and correct! or please enlighten me (in case my answer's incorrect) so that I can learn and improve from my mistakes! Thanks. :)


Great Explanation.
+1 Kudos
_________________

Manickam

Kudos [?]: 6 [0], given: 140

Senior Manager
Senior Manager
avatar
Joined: 20 Feb 2015
Posts: 388

Kudos [?]: 100 [0], given: 10

Concentration: Strategy, General Management
Re: How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 24 Jun 2016, 04:02
2^23*5^23*5*7^3
or,
10^23*5*343
10^23*1715
=27 digits

Kudos [?]: 100 [0], given: 10

3 KUDOS received
Intern
Intern
avatar
Joined: 08 Jun 2011
Posts: 18

Kudos [?]: 22 [3], given: 11

Re: How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 08 Jul 2017, 09:40
3
This post received
KUDOS
To find no of digits, first thing comes in our mind is -
either we do multiplication and see for ourselves. But here, looking at the mammoth factors (2^23 * 5^24 8 7^3), we know it is not posssible or at least very time consuming.

SO, next thing comes in our mind is - we know that 10^2 = 100 = 3 digits
10^3 = 1000 = 4 digits
In fact, 10^ n will have n+1 digits.

Now, I see this because I see a lot of 2's and 5's in the option. Hence, let us try to simplify the given equation -
2^23 * 5^24 * 7^3 = (2*5)^23 * 5 * 7^3
= 10^23 * 5 * 7^3 *
= 24 digits + whatever we get from rest

Let us solve the rest,
7^3 will surely give me 3 digit no, if you do not know 7^3 = 343
Multiplying by 5 will give me a 4 digit number.

This will give me 4 digit number followed by 23 zeroes and hence no of digits will be 27.
Ans D

Kudos [?]: 22 [3], given: 11

Senior Manager
Senior Manager
avatar
B
Joined: 15 Jan 2017
Posts: 282

Kudos [?]: 21 [0], given: 629

Re: How many digits are there in the product 2^23*5^24*7^3? [#permalink]

Show Tags

New post 19 Aug 2017, 01:36
I did a slightly more lengthy approach (but for someone still struggling with Quant; maybe useful):
- intial amount: 2^23 5^24 7^3
- least number of digits - 2*3*5 = 70 --> 2 digits; leaving me with 70 x 2^22 x 5 23 x 7 ^2
- next number -- 70 x 70 x 2^21 x 5^22 x7
- next number -- 343000 x 2^20 x 5 ^21 (now we can understand from this step only zeroes would get added on)
- we have now 3430000 (7 digits) x 2^19 x 5^20 --> we have now 19 zeroes that get added on; leaving aside 5 to power 1
- so we have 7 + 19 = 25 zeroes and 343*5 = 2 additional digits (1715) that get added on
in total 27 digits
Hope this was helpful to anyone that read this :)

Kudos [?]: 21 [0], given: 629

Re: How many digits are there in the product 2^23*5^24*7^3?   [#permalink] 19 Aug 2017, 01:36
Display posts from previous: Sort by

How many digits are there in the product 2^23*5^24*7^3?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.